Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Chữ số tận cùng của lũy thừa \(10^{10^{15^{120}}}\)là 0

Ta có
72016=74x504 = (74)504= 2401504
Vì số có tận cùng là 1 khi nâng lên bất kì lũy thừ nào khác 0 cũng có tận cùng là 1 => 2401504 có chữ số tận cùng là 1
Hay 72016 có chữ số tận cùng là 1
Vậy 7 2016 có chữ số tận cùng là 1
chữ số tận cùng là chữ số 9 nha
vì cứ 6 lần chữ số cuối lại là 9
2016:6=399

4^3^10=4^30=(4^2)^15=..........6^15=...........6
2^2^5=2^10=(2^4)^2 . 2^2=...........6^2 . ...........4=.............4
2^3^4=2^12=(2^4)^3=.............6^3=...............6
3^3^3=3^9=(3^4)^2 . 3=..............1^2 . 3=..............3
9^9^9=9^81=(9^2)^80 . 9=..............1^80 . 9=.................9

C3:
Gọi UCLN(12n + 1 ; 30n + 2) là d
Ta có : 12n + 1 \(⋮\)d \(\Rightarrow\)5(12n + 1) \(⋮\)d \(\Rightarrow\)60n + 5 \(⋮\)d
30n + 2 \(⋮\)d \(\Rightarrow\)2(30n + 2) \(⋮\)d \(\Rightarrow\)60n + 4 \(⋮\)d
\(\Rightarrow\)( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d
\(\Rightarrow\)60n + 5 - 60n - 4 \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d \(\Rightarrow\)d \(\subset\){ 1 ; -1 }
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d thuộc Ư C ( 12n + 1 ; 30n + 2 ) ; d nguyên tố
=> \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d => 1 \(⋮\)d => d thuộc Ư ( 1 ) mà d nguyên tố => d = 1
Do đó phân số 12n+1/30n+2 tối giản với mọi n thuộc Z
Vậy phân số 12n+1/30n+2 tối giản với mọi n thuộc Z

Ta có : 7101 = 74.25 . 7 = (......1) . 7 = (....7)
Vậy chữ số tận cùng của 7101 là 7
Đợi tý, có liền