Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21993 =2.4996 = ...............6.2 =........2
31993 =3.9996 = ................1.3 =........3
21993 = 2.21992 = 2.4996 = ...............6.2 =..........2
tận cùng =2
\(3^{1993}=\left(3^{498}\right)^4.3=\left(.....1\right).3=\left(.....3\right)\)
\(17^{1000}=\left(17^{250}\right)^4.17=\left(.....1\right).17=\left(.....17\right)\)
\(39^{7521}=\left(39^{7520}\right)^4.39=\left(.....1\right).39=\left(.....39\right)\)
Bài 1:
+) Ta có: \(5^{40}=\left(5^4\right)^{10}=625^{10}\)
Vì \(620^{10}< 625^{10}\) nên \(5^{40}>620^{10}\)
Vậy \(5^{40}>620^{10}\)
+) Ta có: \(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}\)
Do \(4^{333}=\left(4^3\right)^{111}=64^{111}< 3^{444}=\left(3^4\right)^{111}=81^{111}\) và \(111^{333}< 11^{444}\) nên suy ra \(111^{444}.3^{444}>4^{333}.11^{333}\Rightarrow333^{444}>444^{333}\)
Vậy \(333^{444}>444^{333}\)
a.Ta có:
\(5^3=125\)
\(5^5=3125\)
\(5^7=78125\)
....
\(5^{2n+1}=\left(...125\right)\)
\(\Rightarrow5^{2017}=5^{1008.2+1}=\left(...125\right)\)
22014+22015+22016
=22014.(1+2+22)
=22014.7
=(22)1007.7
=41007.7
=(42)503.4.7
=16503.28
=*6503.*8
Ta thấy: *6n=*6(n thuộc N*)
=>*6503=*6
=>22014+22015+2201=*6.*8
=*8
Vậy 22014+22015+22016 có tận cùng là 8.
Ta có
2100 = (220)5 = 765 (mod 100) đồng dư 76 (mod 100)
=>2100 có hai chữ số tận cùng là 76.
2^1993=896977105683011347056900938420064050017435704756793125373158388145129891712789307700515223684770523373785909874208955291755561688174261977676508872005197801086953040197752187505381087095625350558038492109870986287356370809737409093338414265941143390397695285610643740694879918793932122262001282984143224073001319601441082075018589725061828585163552941409601583724270514300953188533095947591884905338415676554651534516617357655143781579373852994152663198702360093129335607684294312805938140290754926427776409574872859496315224893901812925850900592061583009183090068756428459147015355107517069149601792