Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, chu so tan cung cua 4^21=4^1+4^20=(...1) + (...6) =(...6) vay 4^21 co tan cung la 6
4^21=(44)5.4=165.4=(...6).4=.....4
=>c/số tận cùng của 4^21 là 4
953=(92)26.9=8126.9=(......1).9=(.....9)
=>9^53 có tận là 9
3^103=(3^4)^25.3^3=81^25.27=(......................1).27=(.......7)
=>3^103 có tận là 7
2 nâng lên lũy thừa bậc mấy cũng tận cùng bằng 6
21000=24.250=.....6
vậy 21000 tận cùng bằng 6
nhớ k cho mình nha!
Lê Thị Như Ý09/12/2014 lúc 21:06 Trả lời 5 Đánh dấu
1, Chữ số tận cùng của 22009 là ?
2, Chữ số tận cùng của 71993 là ?
3, Chữ số tận cùng của 21 + 22 + ... + 2100 là ?
4, Chữ số tận cùng của 20092008 là ?
5, Chữ số tận cùng của 171000 là?
6, Chữ số tận cùng của 2.4.6. ... .48 - 1.3.5. ... .49 là ?
2^1000=(2^4)^250=(...6)^250
vì các số có tận cùng là 0;1;5;6 khi nâng lên lũy thừa bậc mấy cũng vẫn có tận cùng là 0;1;5;6 nên
(...6)^250 = ...6
Vậy 2^2010 có tận cùng là 6
a) \(3^{2018}=3^{4.504}.3^2=...1.9=...9\)
Vậy chữ số tận cùng là 9
b) \(2^{1000}=2^{4.250}=...6\)
Vậy chữ số tận cùng là 6
2^100=(2^4)^250=(...6)^250 vì các số có tận cùng là 0;1;5;6 khi nâng lên lũy thừa bậc mấy vẫn có tận cùng là 0;1;5;6 nên (...6)^250=...6
vậy............
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Lời giải:
Gọi tổng trên là $A$.
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{997}+2^{998}+2^{999}+2^{1000})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{997}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{997})$
$=15(2+2^5+...+2^{997})$
$=30(1+2^4+...+2^{996})$
$\Rightarrow A\vdots 10\Rightarrow A$ có tận cùng là 0.