Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(mk dùng kí hiệu \(\overline{...6}\) để chỉ số có tận cùng là 6 nha)
Ta có \(2^{1992}=\left(2^4\right)^{498}=\left(\overline{...6}\right)^{498}=\overline{..6}\)
=> \(3^{2^{1992}}=3^6=9\) (mod 10). (Dòng này mk dùng dấu "=" thay cho dấu đồng dư nha vì ko có dấu đồng dư)
Lại có \(9^{1992}=\left(9^4\right)^{498}=\left(\overline{...1}\right)^{498}=\overline{...1}\)
=> \(2^{9^{1992}}=2^1=2\) (mod 10) (dòng này cũng là dấu đồng dư)
Do đó chữ số tận cùng của \(3^{2^{1992}}-2^{9^{1992}}\) là 9 - 2 = 7
[148] 2004+111 cho 11=
=1475789056 khi mu 2004 lên ko chưa kết quả khi +111 chia cho 11
ta đc kết quả là 16651498 du 10
[lưu ý số dư luôn nhỏ hơn số bị chia] hay 10 nhỏ hơn 11
TK CHO MK NHA BẠN
Tìm số dư trong phép chia : 109 345:14
109345=1093.115=(102Q(14))115
nên 109345=1(mod14)