Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Số chia hết cho 2 có chữ số tận cùng là số chẵn. (1)
Số chia hết cho 3 có tổng các chữ số chia hết cho 3. (2)
Số chia hết cho 5 có chữ số tận cùng là 0 hoặc 5. (3)
Từ điều kiện (1) và (3) ta được b = 0.
Suy ra, số cần tìm có dạng: 83 a 0 -
Từ điều kiện (2) ta có: (8 + 3 + a + 0) chia hết cho 3
11 + a chia hết cho 3 (4)
Do 0≤a≤9 nên 11 ≤ 11+ a ≤ 20 (5)
Kết hợp (4) và (5) ta tìm được a = 1 hoặc a = 4 hoặc a = 7.
Vậy ba số cần tìm là: 8310; 8340; 8370.
Vì B chia hết cho 2 và 5 nên B chia hết cho 10
=>b=0
Vì B chia hết cho 3 =>5+7+a+2+0 chia hết cho 3
=>14+a chia hết cho 3
Mà B ko chia hết cho 9 => 14+a ko chia hết cho 9
=>a=1 hoặc a=7
Vậy có 2 số thỏa mãn 57120 và 57720
Do số cần tìm chia hết cho 2 và 5 nên b = 0
Để số cần tìm chia hết cho 3 mà không chia hết cho 9 thì tổng các chữ số của nó chia hết cho 3 mà không chia hết cho 9
5 + 7 + a + 2 + 0 chia hết cho 3
a = 1 hoặc a = 7
Vậy a = 1 hoặc 7; b = 0
Ta có: \(B⋮2\) và \(B⋮5\)
=>\(B⋮10\)
=>b=0
Ta lại có: \(B⋮3\) => 5+7+a+2+b \(⋮\)3
hay 14+a\(⋮\)3
=> a=1 hoặc a=4 hoặc a=7
Vậy có 3 số thỏa mãn 57120 ; 57420 ; 57720
Bài 1 nếu chia hết cho 3 thì 7a5b1 thì \(\frac{7a5b1}{3}=\frac{\left(7+5+1+a+b\right)}{3}=\frac{13+\left(a+b\right)}{3}\)
\(\Rightarrow a+b=2;5;8\)
\(a+b=2\left(loại\right)\)(hiệu k thể > hơn tổng)
\(a+b=5\left(loại\right)\)(vì để tìm \(\frac{b:\left(5-4\right)}{2}=0,5\)mà a và b là số tự nhiên =>a+b=8
\(a=\frac{8+4}{2}=6\)\(b=6-4=2\)
Vậy số cần tìm là 76521
Vì a b - chia cho 5 dư 3 nên b = 3 hoặc b = 8.
Vì a b - chia hết cho 9 nên (a + b) chia hết cho 9, mà a b - là số tự nhiên có hai chữ số nên 1 ≤ (a + b) ≤ 18. Suy ra: hoặc (a + b) = 9, hoặc (a + b) = 18
* Xét trường hợp b = 3.
- Nếu (a + b) = 9 thì a = 6 (thỏa mãn). Suy ra số cần tìm là a b - = 63.
- Nếu (a + b) = 18 thì a = 15 (loại vì 1 ≤ a ≤ 9).
* Xét trường hợp b = 8.
+ Nếu (a + b) = 9 thì a = 1 (thỏa mãn). Suy ra số cần tìm là a b - =18.
+ Nếu (a + b) = 18 thì a = 10 (loại vì 1 ≤ a ≤ 9).
số chia cho 5 dư 3 có tận cùng là 3,8 ; mak đề cho số đó chia hết cho 2 mak số chia hết cho 2 có tận cùng là 0,2,4,6,8 nên chọn tận cùng là 8
ta được 1a5b = 1a58 ; vậy để số đó chia hết cho 9 thì a =4
vậy a = 4 ; b = 8
- n chia hết cho 4 thì 8b phải chia hết cho 4. Vậy b = 0, 4 hoặc 8
- n có 5 chữ số khác nhau nên b = 0 hoặc 4
- Thay b = 0 thì n = a3780
+ Số a3780 chia hết cho 3 thì a = 3, 6 hoặc 9
+ Số n có 5 chữ số khác nhau nên a = 6 hoặc 9
Ta được các số 63 780 và 930780 thoả mãn điều kiện của đề bài
- Thay b = 4 thì n = a3784
+ Số a3784 chia hết cho 3 thì a = 2, 5 hoặc 8
+ Số n có 5 chữ số khác nhau nên a = 2 hoặc 5. Ta được các số 23784 và 53 784 thoả mãn điều kiện đề bài
Các số phải tìm 63 780; 93 780; 23 784; 53 784.
\(\overline{93ab}⋮2;\overline{93ab}⋮5\)
=>b=0
=>Số cần tìm có dạng là \(\overline{93a0}\)
\(\overline{93a0}⋮3\)
=>\(9+3+a+0⋮3\)
=>\(a+12⋮3\)
=>\(a\in\left\{0;3;6;9\right\}\)