K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

2^10 = 1024 => 2^10 đồng dư 24 modun 100 
=> 2^50 đồng dư 24^5 theo modun 100 
mà 24^5 =7962624 đồng dư 24 theo modun 100 
=> 2^50 đồng dư 24 modun 100 
=> 2^100 đồng dư 24^2 =576 đồng dư 76 modun 100 
vậy 2 chữ số tận cùng của 2^100 là 76 :-) 

17 tháng 4 2017

2100=(220)5=(....76)5=(....76)

Vậy chữ số tận cùng là 6

- Ủng hộ -

~minhanh~

23 tháng 2 2018

9 đúng ko

24 tháng 2 2018

mình ko biết nhưng bạn nêu cách giải được ko

27 tháng 11 2016

Đặt hai biểu thức trên là A và B ta có:

b)  A = 31989 = 81497.3 có chữ số tận cùng là 1.3 = 3.

a) B = 2999 + 32999 = 16249 . 8 ( có chữ số tận cùng là 8 ) + 81749 . 27 ( có chữ số tận cùng là 7 ). Vậy B có chữ số tận cùng là 5.

29 tháng 3 2020

a, 2999 = 2249.4+3=2249.4 . 23 = (.....6).8=(........8). Vậy 2999 có chữ số tận cùng là 8

b, 3999=3249.4+3=3249.4.33=(......1) . (....7) =(....7) . Vậy 3999 có chữ số tận cùng là 7

18 tháng 5 2016

Không nhất thiết phải sử dụng phép đồng dư.

Nhận xét: với tích của mọi số có tận cùng là 6 ta đều có chữ số tận cùng là 6 tức là 6n luôn tận cùng là 6

Vậy 62009 tận cùng là 6

18 tháng 5 2016

\(6^{2009}=6^{2008}.6=.......6.6=.......6\)

Suy ra chữ số tận cùng của \(6^{2009}\)=6

2 tháng 9 2018

Ta có:

\(2^{2012}=\left(2^4\right)^{503}=16^{503}\)

Ta có:

\(16^5\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^5\right)^2\equiv576^2\equiv776\left(mod1000\right)\)

\(\Rightarrow\left(16^{10}\right)^2\equiv776^2\equiv176\left(mod1000\right)\)

\(\Rightarrow\left(16^{20}\right)^4\equiv176^4\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^{80}\right)^3\equiv576^3\equiv976\left(mod1000\right)\)

\(\Rightarrow\left(16^{240}\right)^2\equiv976^2\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{480}\equiv576\left(mod1000\right)\)     (1)

Ta có \(16^{20}\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{23}\equiv576.16^3\equiv296\left(mod1000\right)\) (2)

Từ (1),(2)

\(\Rightarrow16^{503}\equiv296.576\equiv496\left(mod1000\right)\)

\(\Rightarrow2^{2012}\equiv496\left(mod1000\right)\)

vậy 3 chữ số tận cùng của 2^2012 là 496

9 tháng 1 2018

a(trên) 3

a(dưới) 1

23 tháng 2 2018

a)7^9^7^9=...3

a)29^2^2012=...1

9 tháng 9 2019

Ta có: 

\(1980=20.99\)

=> \(A=17^{1980}=17^{20.99}=\left(17^{20}\right)^{99}\equiv1^{99}\equiv1\left(mod100\right)\)

Hai chữ số tận cùng của A là 01

24 tháng 12 2015

Ta có:

11 đồng dư với 1 (mod 10)

=> 112015 đồng dư với 12015 (mod 10)

=> 112015 đồng dư với 1 (mod 10)

=> 112015 - 1 đồng dư với 1 - 1 (mod 10)

=> 112015 - 1 đồng dư với 0 (mod 10)

=> 112015 - 1 chia hết cho 10 

mà 10 chia hết cho 2 và 5 => 112015 - 1 chia hết cho 2 và 5

Ta có: 112015 - 1 = (...1) - 1 = (...0) chia hết cho 10

Mà 10 chia hết cho 2 và 5 => (...0) chia hết cho 2 và 5 => 112015 - 1 chia hết cho 2 và 5

24 tháng 12 2015

Monkey D.Luffy khôn v~, éo bt từ tiếg a vt kiểu j` :v