K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

\(x+\sqrt{2-x^2}=4y^2+4y+3=\left(2y+1\right)^2+2\ge2>0\)

Do \(\sqrt{2-x^2}\ge0\Rightarrow x>0\) 

AD BĐT Bunhiacopxki cho 2 số x và \(\sqrt{2-x^2}\) , ta có : 

\(VT=x+\sqrt{2-x^2}\le\sqrt{\left(1+1\right)\left(x^2+2-x^2\right)}=2\)

Mà \(VP\ge2\) \(\Rightarrow VT=VP=2\)

Dấu " = " xảy ra \(\Leftrightarrow2y+1=0;x=\sqrt{2-x^2}\Leftrightarrow y=-\frac{1}{2};x=1\)

9 tháng 5 2017

a/ Sửa đề:

\(\sqrt{22x^2+36xy+6y^2}+\sqrt{22y^2+36xy+6x^2}=x^2+y^2+32\)

\(\Leftrightarrow64x^2+64y^2+2048-64\sqrt{22x^2+36xy+6y^2}-64\sqrt{22y^2+36xy+6x^2}=0\)

\(\Leftrightarrow\left(22x^2+36xy+6y^2-64\sqrt{22x^2+36xy+6y^2}+1024\right)+\left(22y^2+36xy+6x^2-64\sqrt{22y^2+36xy+6x^2}+1024\right)+\left(36x^2-72xy+36y^2\right)=0\)

\(\Leftrightarrow\left(\sqrt{22x^2+36xy+y^2}-32\right)^2+\left(\sqrt{22y^2+36xy+6x^2}-32\right)^2+36\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{22x^2+36xy+6y^2}=32\\\sqrt{22y^2+36xy+6x^2}=32\\x=y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{64x^2}=32\\x=y\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=4\\x=y=-4\end{cases}}\)

9 tháng 5 2017

Câu b đề sai rồi.

6 tháng 12 2015

VT áp dụng BĐT bu-nhi-a- cop - xki 

Vp đưa về Hđt 

13 tháng 3 2018

pt <=> x^3+4x^2y+y^3+4xy^2 = 36

<=> (x^3+y^3)+(4x^2y+4xy^2) = 36

<=> (x+y).(x^2-xy+y^2)+4xy.(x+y) = 36

<=> (x+y).(x^2-xy+y^2+4xy) = 36

<=> (x+y).(x^2+3xy+y^2) = 36

Đến đó bạn dùng ước bội mà giải từng cái nha

Tk mk

4 tháng 9 2016

Kho qua!

4 tháng 9 2016

toan lop 9 kho dui

ban dua cau hoi nay len 24h di

18 tháng 10 2021

\(2\left(2x+y^2-2y\sqrt{x-1}+2\sqrt{x-1}-4y+3\right)=0\)

Ta có:

\(VT=\left(y-1\right)^2-4\sqrt{x-1}\left(y-1\right)+4\left(x-1\right)+y^2-6y+9\)

\(=\left[\left(y-1\right)-2\sqrt{x-1}\right]^2+\left(y-3\right)^2\ge0=VP\)

Dấu = xảy ra khi:

\(\hept{\begin{cases}y-3=0\\y-1=2\sqrt{x-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3\\x=2\end{cases}}\)

26 tháng 11 2021

Đặt \(\left(x-1;y-2;z-3\right)=\left(a;b;c\right)=abc>0\)

Điều kiện bài toán trở thành :

\(a+1+b+2+c+3< 9\)

\(\sqrt{a+\sqrt{b}+\sqrt{c}}+\sqrt{c+5\left(a+1\right)+4\left(b+2\right)+3+\left(c+3\right)}\)

\(=\left(a+1\right)\left(b+2\right)=\left(b+2\right)\left(c+3\right)=\left(c+3\right)+\left(a+1\right)+11+a+b+c< 3\)

\(a+b+c< 3\)

\(=\sqrt{a+\sqrt{b}+\sqrt{c}+ab+bc+ca}\)

Mặt khác, do aa không âm, ta luôn có:

\(\text{(√a−1)2(a+2√a)≥0(a−1)2(a+2a)≥0}\)

\(\text{⇒a2−3a+2√a≥0⇒a2−3a+2a≥0}\)

\(\text{⇒2√a≥a(3−a)≥a(b+c)⇒2a≥a(3−a)≥a(b+c) (1)}\)

Hoàn toàn tương tự ta có:\(\text{ 2√b≥b(c+a)2b≥b(c+a) (2)}\)

\(\text{2√c≥c(a+b)2c≥c(a+b) (3)}\)

Cộng vế với vế (1);(2);(3):

\(\text{2(√a+√b+√c)≥2(ab+bc+ca)2(a+b+c)≥2(ab+bc+ca)}\)

\(\text{⇔√a+√b+√c≥ab+bc+ca⇔a+b+c≥ab+bc+ca}\)

Dấu "=" xảy ra khi và chỉ khi \(\text{a=b=c=0a=b=c=0 hoặc a=b=c=1a=b=c=1}\)

⇒x=...;y=...;z=...