Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
\(\left(\frac{2x-3}{4}\right)^{2014}+\left(\frac{3y+4}{5}\right)^{2016}=0\)
Có: \(\left(\frac{2x-3}{4}\right)^{2014}\ge0;\left(\frac{3y+4}{5}\right)^{2016}\ge0\)
Mà theo bài ra: \(\left(\frac{2x-3}{4}\right)^{2014}+\left(\frac{3y+4}{5}\right)^{2016}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{2x-3}{4}=0\\\frac{3y+4}{5}=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-3=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=3\\3y=-4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}\)
Vậy: \(\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2x-3}{4}=0\\\frac{3y+4}{5}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Ta thấy:\(\left(x-3\right)^{2012}=\left(\left(x-3\right)^{1006}\right)^2\ge0\)
\(\left(3y-12\right)^{2014}=\left(\left(3y-12\right)^{1007}\right)^2\ge0\)
=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\)
mà \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\)
=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}=0\)
=>\(\left(x-3\right)^{2012}=0=>x-3=0=>x=3\)
\(\left(3y-12\right)^{2014}=0=>3y-12=0=>3y=12=>y=4\)
Vậy x=3,y=4
( 3x-5 /9 )^2002 > 0 ; ( 3y+0,4/3 )^2004 > 0
=> (3x-5/9 )^2002 = 0 và ( 3y + 0,4 / 3 )^2004 = 0
=> 3x - 5 = 0
3x = 5
x = 5/3
=> 3y + 0,4 = 0
3y = -0,4
y= -2/15