Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ \(2x=3y\Rightarrow x=\frac{3y}{2}\left(1\right)\)
+ \(5y=7z\Rightarrow z=\frac{5y}{7}\left(2\right)\)
Thay (1) và (2) vào 3x - 7y + 5z = - 30
Ta có \(3.\frac{3y}{2}-7y+5.\frac{5y}{7}=-30\Rightarrow y=-28\)
Thay y = - 28 vào (1) => x = - 42
Thay y = - 28 vào (2) => x = -20
\(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x+y+z}{21+14+10}=\frac{3x-7y+5z}{3.21-7.14+5.10}=-\frac{30}{15}=-2\)
\(\Rightarrow\frac{x+y+z}{45}=-2\Rightarrow x+y+z=-90\)
do 8(y-2016)2lớn hơn hoặc bằng 0 nên 36-x2lớn hơn hoặc bằng 0 hay 36 lớn hơn hoặc bằng x2 nên 6 lớn hơn hoặc bằng x mà x là số tự nhiên
Vì x2 > hoặc = 0
=>36-x2 < hoặc = 36
=>8(y-2016)2 <=36 ( viết thế cho gọn...hihi)
=> (y-2016)2 <= 36/8=9/2
Mà y thuộc N=> (y-2016)2 = {0;1;4}
----Nếu (y-2016)2 =0 => y-2016=0 => y=2016 thay vào đề bài:
36-x2=0 =>x2=36 =>x=6 (chọn)
----Nếu (y-2016)2 = 1 => y-2016={1;-1} =>y={2015;2017} thay vào đề bài:
36-x2=8 =>x2=28 (loại)
----Nếu (y-2016)2 = 4 => y-2016={2;-2} =>y={2014;2018} thay vào đề bài:
36-x2=32 => x2=4 =>x={-2;2} (chọn)
Kết luận: (x,y)=... (bạn tự viết nhé!)
xy+3x-y=6
=>xy+3x-y-3=6-3=3
=>x(y+3)-(y+3)=3
=>(x-1)(y+3)=3
Vậy x-1;y+3 \(\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)
Ta có bảng sau :
x-1 | 1 | 3 | -1 | -3 |
y+3 | 3 | 1 | -3 | -1 |
x | 2 | 4 | 0 | -2 |
y | 0 | -2 | -6 | -4 |
Vậy ta có các cặp \(\left(x;y\right)\in\left(2;0\right);\left(4;-2\right);\left(0;-6\right);\left(-2;-4\right)\)
5 k nha
xy + 3x - y = 6
<=> ( xy + 3x ) - ( y + 3 ) = 3
<=> x ( y + 3 ) - ( y + 3 ) = 3
<=> ( x - y ) ( y + 3 ) = 3 = 3.1 = -3. (-1)
=> Có 4 trường hợp :
\(\hept{\begin{cases}x-1=3\\y+3=1\end{cases}},\hept{\begin{cases}x-1=1\\y+3=3\end{cases}},\hept{\begin{cases}x-1=-3\\y+3=-1\end{cases}},\hept{\begin{cases}x-1=-1\\y+3=-3\end{cases}}\)
Từ 4 trường hợp trên, ta tìm đc 4 cặp số x,y thỏa mãn là :
( x = 4 ; y = - 2 )
( x = 2 ; y = 0 )
( x = -2 ; y = -4 )
( x = 0 ; y = -6 )
kb mk nha :>>
Tìm các số tự nhiên a;b biết :(2016a+13b-1)(2016^a+2016a+b)=2015
Số tự nhiên x thỏa mãn 1/1.3+1/3.5+1/5.7+...+1/X(X+2)=16/34 là 15.
\(\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{x\left(x+2\right)}=\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1.3}+....+\frac{1}{x\left(x+2\right)}\right)=\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+.....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{x+2}\right)=\frac{16}{34}\)
\(\frac{1}{1}-\frac{1}{x+2}=\frac{16}{34}:\frac{1}{2}\)
\(\frac{1}{1}-\frac{1}{x+2}=\frac{16}{17}\)
\(\frac{1}{x+2}=\frac{1}{1}-\frac{16}{17}=\frac{1}{17}\Rightarrow x+2=17\Rightarrow x=15\)
Giải
\(2x-5x+4xy=6\)
\(\Leftrightarrow x\left(2-5+4y\right)=6\)
\(\Leftrightarrow x\left(4y-3\right)=6\)
\(\Leftrightarrow x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
\(x\) | \(-6\) | \(-3\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(4y-3\) | \(-1\) | \(-2\) | \(-3\) | \(-6\) | \(6\) | \(3\) | \(2\) | \(1\) |
\(y\) | \(0\) | \(1\) |
Vậy \(x,y\in\left\{\left(-2,0\right);\left(6,1\right)\right\}\)