K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Ta có: \(\left|x-2007\right|\ge0\forall x\)\(\Rightarrow2\left|x-2007\right|\ge0\forall x\)

\(\Rightarrow2\left|x-2007\right|+3\ge3\forall x\Rightarrow VT\ge3\forall x\left(1\right)\)

Lại có: \(\left|y-2008\right|\ge0\forall y\)\(\Rightarrow\left|y-2008\right|+2\ge2\forall y\)

\(\Rightarrow\frac{1}{\left|y-2008\right|+2}\le2\forall y\)

\(\Rightarrow\frac{6}{\left|y-2008\right|+2}\le\frac{6}{2}=3\forall y\Rightarrow VP\le3\forall y\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) ta có: \(VT\ge3\ge VP\) xảy ra khi và chỉ khi 

\(VT=VP=3\)\(\Leftrightarrow\hept{\begin{cases}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2007\\y=2008\end{cases}}\)

13 tháng 3 2016

đề này vẫn thiếu hay sao ý
 

13 tháng 3 2016

hpt thiếu thì giải kiểu j

|x|+2+|y|= bao nhiêu

21 tháng 7 2016

Đặt \(u=x^{669}\)\(v=y^{669}\left(u,v\in Z\right)\)thì PT ( 1 ) có dạng \(u^3=v^3-v^2-v+2\).

Nhận thấy:

\(u^3=v^3-v^2-v+2=\left(v-1\right)^3+2\left(v-1\right)^2+1>\left(v-1\right)^3\)và \(u^3=v^3-\left(v-1\right).\left(v+2\right)\)

+ Nếu \(v>1\)hoặc \(v< -2\)thì \(\left(v-1\right)\left(v+2\right)>0\), suy ra: \(\left(v-1\right)^3< u^3< v^3\Leftrightarrow v-1< u< v\), điều này không thể xảy ra khi \(u,v\in Z.\)

+ Với \(-2\le v\le1\)và \(v\in Z\)thì \(v\in\left\{-2;-1;0;1\right\}\)

Nếu \(v=-2\)thì \(y^{669}=-2\), nên \(y\notin Z.\)

Nếu \(v=-1\)thì \(u=1\), suy ra: \(x=-1;y=1\)

Nếu \(v=0\)thì \(u=2\), suy ra: \(x^{669}=2\), nên \(x\notin Z.\)

Nếu \(v=1\)thì \(u=1\), suy ra: \(x=y=1.\)

Vậy các cặp số nguyên ( x ; y ) thỏa mãn ( 1 ) là ( 1 ; 1 ) và ( 1 ; -1 ).

21 tháng 7 2016

hay đúng là An trần có khác

Ta có\(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\left(1\right)\)

:\(\frac{12}{\left|y-1\right|+\left|y-3\right|}=\frac{12}{\left|y-1\right|+\left|3-y\right|}\le\frac{12}{\left|y-1+3-y\right|}=\frac{12}{2}=6\left(2\right)\)

\(\left(x+y-3\right)^2+6\ge6\left(3\right)\)

Từ (1),(2) và (3)

Suy ra dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-3=0\\\left(y-1\right)\left(3-y\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}1\le y\le3\\x+y=3\end{cases}}\)

Với y=1 thì x=2

Với y=2 thì x=1

Với y=3 thì x=0

Vậy....................