K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

Ta có: \(x-2y+y=2\)

    \(\Leftrightarrow x-y=2\)

Vì \(x,y\inℤ\)\(\Rightarrow\)\(x,y\)vô số các giá trị

30 tháng 1 2021

Ta có : x - 2y + y = 2

<=> x - y = 2

Vì : x,y ( Z => x,y vô số các giá trị

21 tháng 7 2018

Ta có: 2xy + x - 2y = 4

=> 2y(x - 1) + x = 4

=> 2y(x - 1) + x - 1 = 3

=> 2y(x - 1) + (x - 1) = 3

=>  (x - 1).(2y + 1) = 3

=> x-1 và 2y+1 là Ư(3)={-3;-1;1;3}

Ta có bảng:

x - 1-1-313
2y + 1-3- 131
x0-224
y-2-110
21 tháng 7 2018

x(2y+1)-(2y+1)= 4-1

(x-1)(2y+1)=3

Bạn tự làm tiếp nhé.

28 tháng 6 2020

Ta có :

2xy + x - 2y = 4

\(\Rightarrow\) 2y ( x - 1 ) + x = 4

\(\Rightarrow\) 2y ( x - 1 ) + x - 1 = 3

\(\Rightarrow\) 2y ( x - 1 ) + ( x - 1 ) = 3

\(\Rightarrow\) ( x - 1 ) . ( 2y + 1 ) = 3

\(\Rightarrow\) x - 1 và 2y + 1 là Ư(3) = { - 3 ; - 1 ; 1 ; 3 }

Ta có bảng :

   x - 1      - 1       -  3       1         3    
  2y + 1  - 3   - 1    3   1
     x   0   - 2    2   4
    y  - 2   - 1   1   0

Vậy ...

28 tháng 6 2020

2xy+x-2y=4

x(2y+1)-2y=4

x(2y+1)-2y-1=3

x(2y+1)-(2y+1)=3

(x-1)(2y+1)=3

Vì x;y là số nguyên => x-1;2y+1 là số nguyên

                               => x-1;2y+1  \in Ư(3)

Ta có bảng:

x-113-3-1
2y+131-1-3
x24-20
y10-1-2

Vậy cặp số nguyên (x;y) cần tìm là: (2;1) ; (4;0) ; (-2;-1) ; (0;-2).

18 tháng 4 2017

còn cách này

\(9x-2y+6xy=-8\Leftrightarrow9x-2y+6xy-3=-11\Leftrightarrow\left(9x+6xy\right)-\left(3+2y\right)=-11\)

\(\Leftrightarrow3x\left(3+2y\right)-\left(3+2y\right)=-11\Leftrightarrow\left(3x-1\right)\left(3+2y\right)=-11\)

Vì x;y là các số nguyên nên ta xét các trường hợp:

TH1: 3x-1=-11;3+2y=1 => x=-10/3;y=-1 (loại)

TH2: 3x-1=-1;3+2y=11 => x=0;y=4 (nhận)

TH3: 3x-1=1;3+2y=-11 => x=2/3;y=-7 (loại)

TH4: 3x-1=11;3+2y=-1 => x=4;y=-2 (nhận)

Vậy có 2 cặp x;y thoả mãn là (0;4) và (4;-2)

18 tháng 4 2017

<=> 9x+8=2y-6xy

<=> 9x+8=y(2-6x) => \(y=-\frac{9x+8}{6x-2}=-\frac{18x+16}{18x-6}.\frac{3}{2}=-\frac{3}{2}.\frac{18x-6+22}{18x-6}\)

=> \(y=-\frac{3}{2}.\left(1+\frac{22}{18x-6}\right)=-\frac{3}{2}-\frac{33}{18x-6}=-\frac{3}{2}-\frac{11}{6x-2}\)

=> \(2y=-3-\frac{11}{3x-1}\)

Để y nguyên thì trước hết thì 2y phải nguyên => 11 phải chia hết cho 3x-1 => 3x-1={-11; -1; 1; 11}

+/ 3x-1=-11 => x=-10/3 => Loại

+/ 3x-1=-1 => x=0 => y=8/2=4

+/ 3x-1=1 => x=2/3 => Loại

+/ 3x-1=11 => x=4 => y=-4:2=-2

=> Có 2 cặp số x, y thỏa mãn là: (0; 4) và (4; -2)

9 tháng 4 2017

bài này gần như là của lớp 6

28 tháng 11 2017

đúng nhưng đây đã nâng cao hơn và cx là dạng bồi giỏi của lớp 7

tui nhớ hình như là vậy

3 tháng 2 2017

\(\Rightarrow x\left(2y+1\right)-\left(2y+1\right)+1=4+1=5\)

...... tự lm

14 tháng 3 2018

\(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow2x^2-xy+4xy-2y^2=7\)

\(\Leftrightarrow x\left(2x-y\right)+2y\left(2x-y\right)\)

\(\Leftrightarrow\left(x+2y\right)\left(2x-y\right)=7\)

Nếu 2x - y = 7 và x + 2y = 1 thì:

\(2\left(2x-y\right)+x+2y=15\)

\(\Leftrightarrow5x=15\)

\(\Leftrightarrow x=3;y=1\)( thỏa mãn )

Nếu 2x - y = 1 và x + 2y = 7 thì:

\(2\left(2x-y\right)+x+2y=9\)

\(\Leftrightarrow5x=9\Leftrightarrow x=\frac{9}{5}\)( loại )

Nếu 2x - y = -7 và x + 2y = -1 thì:

\(2\left(2x-y\right)+x+2y=-15\)

\(\Leftrightarrow5x=-15\)

\(\Leftrightarrow x=-3;y=1\)( thỏa mãn )

Nếu 2x - y = -1 và x + 2y = -7

\(\Leftrightarrow2\left(2x-y\right)+x+2y=-9\)

\(\Leftrightarrow5x=-9\Leftrightarrow x=\frac{-9}{5}\)( loại )

5 tháng 10 2023

\(2xy+x-2y=4\\\Rightarrow (2xy+x)-2y-1=3\\\Rightarrow x(2y+1)-(2y+1)=3\\\Rightarrow (2y+1)(x-1)=3\)

Ta có: \(x,y\) nguyên

\(\Rightarrow2y+1;x-1\) là các ước của \(3\)

Mặt khác: \(2y+1\) là số lẻ với mọi \(y\) nguyên

Ta có bảng:

x - 13-3
2y + 11-1
x4-2
y0-1

(thoả mãn điều kiện \(x,y\) nguyên)

Vậy: ...

#\(Toru\)