K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2021

.Ta có:

x4−5y=32x4−5y=32

→x−20y=6→x−20y=6

→x−6=20y→x−6=20y

→(x−6)y=20→(x−6)y=20

Mà x,y∈N→(x−6,y)x,y∈N→(x−6,y) là cặp ước của 2020 

Mặt khác y∈N→y≥0y∈N→y≥0

→(x−6,y)∈{(20,1),(10,2),(5,4),(4,5),(2,10),(1,20)}→(x−6,y)∈{(20,1),(10,2),(5,4),(4,5),(2,10),(1,20)}

→(x,y)∈{(26,1),(16,2),(11,4),(10,5),(8,10),(7,20)}

a) => 2xy +3x=y+1

=> 2xy+3x-y=1

=> x(2y+3) -  1/2 (2y+3) +3/2 =1

=> (x-1/2)(2y+3)=1-3/2= -1/2

=> (2x-1)(2y+3)=-1

ta có bảng

...........

11 tháng 4 2020

x(2y+3) = y +1 => y+1 chia hết cho 2y +3 

                         => 2y + 2 chia hết cho 2y +3 

                         => 2y + 3 - 1 chia hết cho 2y + 3 

                         => -1 chia hết cho 2y +3

                          => 2y + 3 = -1 

2y +3 = -1 = > y = -2  =>  -x = -1 => x=1

2y + 3 = 1 => y = 1 => x = 0

11 tháng 4 2020

Ta có : x .( 2y+ 3 ) = y + 1 

=> ( y + 1 ) \(⋮\)( 2y + 3 ) 

=> \(\left(2y+2\right)⋮\left(2y+3\right)\)

=> ( 2y + 3 - 1 ) \(⋮\) ( 2y+ 3 ) 

=> - 1 \(⋮\) ( 2y + 3 )

=> ( 2y+ 3 ) \(\in\left\{1;-1\right\}\)

TH1 : 

2y + 3 =-1 <=> y = -2 

                  =>  x = 1 

TH2 : 

2y + 3 = 1 <=> y = -1

                 => x = 0 

Vậy ta có các cặp số nguyên ( x , y ) thỏa mãn là : ( 0 , -1 ) ; ( 1 ; -2 ) 

\(\dfrac{x}{3}+\dfrac{1}{6}=\dfrac{-1}{y}\)

=>\(\dfrac{2x+1}{6}=\dfrac{-1}{y}\)

=>y(2x+1)=-6

mà 2x+1 lẻ

nên \(\left(2x+1\right)\cdot y=1\cdot\left(-6\right)=\left(-1\right)\cdot6=3\cdot\left(-2\right)=\left(-3\right)\cdot2\)

=>\(\left(2x+1;y\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(0;-6\right);\left(-1;6\right);\left(1;-2\right);\left(-2;2\right)\right\}\)