Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
\(\left(2x-1\right)\left(y-7\right)=22\)
\(\Rightarrow\left(2x-1\right);\left(y-7\right)\in\left\{1;2;11;22\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(\dfrac{3}{2};18\right);\left(6;9\right);\left(\dfrac{23}{2};8\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(6;9\right)\right\}\left(x;y\inℤ^+\right)\)
+ Xét x > 2:
Ta có 2x hehia hết cho 8.
Xét y lẻ thì ta có 5y chia cho 8 dư 5 nên 2x + 5y chia 8 dư 5 (loại).
Từ đây y chỉ có thế là số chẵn.
Đặt y = 2k thì ta có:
2x + 52k = a2
\(\Leftrightarrow\)2x = a2 - 52k
\(\Leftrightarrow\)2x = (a - 5k)(a + 5k)
\(\Rightarrow\hept{\begin{cases}a-5^k=2^m\\a+5^k=2^n\end{cases}}\)
\(\Rightarrow a=2^{m-1}+2^{n-1}\)
Vì a lẻ nên 1 trong 2 thừa số phải là 1.
Xét \(2^{m-1}=1\)
\(\Rightarrow m=1\)
Thế ngược lên hệ trên thì ta được
\(\hept{\begin{cases}a-5^k=2\\a+5^k=2^n\end{cases}}\)
\(\Rightarrow5^k=2^{n-1}-1\)
Ta thấy VT chia cho 8 dư 5 hoặc 1 nên VP phải chia cho 8 dư 5 hoặc 1.
Từ đây suy được n = 2.
\(\Rightarrow k=0\)
\(\Rightarrow\hept{\begin{cases}y=0\\x=3\end{cases}}\left(l\right)\)
Tương tự cho trường hợp còn lại với n = 1 ta nhận thấy với x > 2 thì không có giá trị thỏa mãn bài toán.
+ Xét \(x\le2\)ta dễ dàng tìm được
\(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
wow,mới lớp 5 mà đã hỏi được bài lớp 8 kìa