K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
13 tháng 6 2017
Đề câu trả lời trên là:
Tìm x, y, z thuộc Z, biết
a) |x| + |-x|= 3-x
b) x6 −1y =12
c) 2x = 3y; 5x = 7z và 3x - 7y +5z = 30
PT
0
Nhận xét : Nếu cộng các đẳng thức, ta nhận được:
\(\left(x^4+2x^3-x+\frac{1}{4}\right)+\left(y^4+2y^3-y+\frac{1}{4}\right)=0.\)
Với việc chọn đa thức \(P\left(x\right)=\left(x-a\right)^2\left(x-b\right)^2,\)sau khi khai triển và đồng nhất hệ số với đa thức \(Q\left(x\right)=x^4+2x^3-x+\frac{1}{4}\)ta được: \(a=\frac{-1+\sqrt{3}}{2}\)và \(b=\frac{-1-\sqrt{3}}{2}.\)
Lời giải: Xét đa thức: \(P\left(x\right)=\left(x-\frac{-1+\sqrt{3}}{2}\right)^2\left(x-\frac{-1-\sqrt{3}}{2}\right)^2,\)
Thấy rằng với mọi \(x\in R\)thì \(P\left(x\right)\)luôn không âm. Suy ra
\(0\le P\left(x\right)+P\left(y\right)=\left(x+2x^3-x+\frac{1}{4}\right)+\left(y^4+2y^3-y+\frac{1}{4}\right)\)
\(=\left(x^4+2y^3-x\right)+\left(y^4+2x^3-y\right)+\frac{1}{4}+\frac{1}{4}\)
\(=-\frac{1}{4}+3\sqrt{3}+\left(-\frac{1}{4}-3\sqrt{3}\right)+\frac{1}{4}+\frac{1}{4}\)
\(=0\)
Vì \(P\left(x\right);P\left(y\right)\)đều không âm nên dấu '=' xảy ra khi và chỉ khi \(P\left(x\right)=P\left(y\right)=0\).
Do đó: \(x,y\in\left\{\frac{-1+\sqrt{3}}{2};\frac{-1-\sqrt{3}}{2}\right\}.\)Thay vào phương trình và dùng phép thử trực tiếp, ta thu nhận được:
\(x=\frac{-1-\sqrt{3}}{2},y=\frac{-1+\sqrt{3}}{2}.\)