Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ước nguyên nhỏ nhất là - ( 2152 + 3142 )
Ước nguyên lớn nhất là ( 2152 + 3142 )
Chúc bạn học tốt
\(A=x^2+2x+9y^2-6y+2018\)
\(=x^2+2x+1+9y^2-6y+1+2016\)
\(=\left(x+1\right)^2+\left(3y-1\right)^2+2016\ge2016\forall x;y\)
Dấu ''='' xảy ra khi x = -1 ; y = 1/3
Vậy GTNN của A bằng 2016 tại x = -1 ; y = 1/3
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
toàn hđt mà bạn
a, \(\frac{x^3}{8}+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6=\left(\frac{x}{2}+y^2\right)^3\)
b, \(m^3+9m^2n+27mn^2+27n^3=\left(m+3n\right)^3\)
c, \(8u^3-48u^2v+96uv^2-64v^3=\left(2y-4v\right)^3\)
d, \(\left(z-t\right)^3+15\left(z-t\right)^2+75\left(z-t\right)+125\)
\(=\left(z-t+5\right)^3\); e, \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
sửa hộ mình ý c =)) do gần nhau quá nên đánh lộn
\(\left(2u-4v\right)^3\)
a ) Với p = 3 , p là số nguyên tố và \(p^2+8=3^2+8=17\)cũng là số nguyên tố => p = 3 thỏa mãn đề bài
Xét với p > 3 , ta biểu diễn :
\(p^2+8=\left(p^2-1\right)+9=\left(p-1\right)\left(p+1\right)+9\)
Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 ắt sẽ có một số chia hết cho 3.
Vì p là số nguyên tố , p > 3 nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3. Suy ra tích (p - 1)(p + 1) chia hết cho 3. Lại có 9 chia hết cho 3
\(\Rightarrow p^2+8\)chia hết cho 3. (vô lí vì \(p^2+8\)là số nguyên tố lớn hơn 3)
Vậy p = 3 \(\Rightarrow p^2+2=3^2+2=11\)là số nguyên tố (đpcm)
b) Với p = 3 thì \(8p^2+1\)là số nguyên tố.
Với p là số nguyên tố, p > 3 :
Ta có : \(8p^2+1=8\left(p^2-1\right)+9=8\left(p-1\right)\left(p+1\right)+9\)
Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 , ắt sẽ tìm được một số chia hết cho 3
Vì p là số nguyên tố, p > 3 , nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3
Suy ra tích (p - 1)(p + 1) chia hết cho 3 . Lại có 9 chia hết cho 3
=> 8p2 + 1 chia hết cho 3 (vô lí vì 8p2 + 1 là số nguyên tố lớn hơn 3)
Vậy p = 3 . Suy ra 2p + 1 = 7 là số nguyên tố. (đpcm)
Ước nguyên nhỏ nhất là \(-\left(215^2+314^2\right)\)
Ước nguyên lớn nhất là \(\left(215^2+314^2\right)\)