\(215^2+314^2\) .

(giu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

Ước nguyên nhỏ nhất là \(-\left(215^2+314^2\right)\)

Ước nguyên lớn nhất là \(\left(215^2+314^2\right)\)

10 tháng 8 2018

Ước nguyên nhỏ nhất là - ( 2152 + 314)

Ước nguyên lớn nhất là ( 2152 + 314)

Chúc bạn học tốt

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

17 tháng 4 2018

a. Phân số đó là 1/5 

b. 28 và 40 

c. 30 và 10

17 tháng 4 2018

Giaỉ thích gìum  với

24 tháng 7 2016

a ) Với p = 3 , p là số nguyên tố và \(p^2+8=3^2+8=17\)cũng là số nguyên tố => p = 3 thỏa mãn đề bài 

Xét với p > 3 , ta biểu diễn : 

\(p^2+8=\left(p^2-1\right)+9=\left(p-1\right)\left(p+1\right)+9\)

Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 ắt sẽ có một số chia hết cho 3.

Vì p là số nguyên tố , p > 3 nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3. Suy ra tích (p - 1)(p + 1) chia hết cho 3. Lại có 9 chia hết cho 3

\(\Rightarrow p^2+8\)chia hết cho 3. (vô lí vì  \(p^2+8\)là số nguyên tố lớn hơn 3) 

Vậy p = 3 \(\Rightarrow p^2+2=3^2+2=11\)là số nguyên tố (đpcm)

b) Với p = 3 thì \(8p^2+1\)là số nguyên tố.

Với p là số nguyên tố, p > 3 : 

Ta có : \(8p^2+1=8\left(p^2-1\right)+9=8\left(p-1\right)\left(p+1\right)+9\)

Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 , ắt sẽ tìm được một số chia hết cho 3

Vì p là số nguyên tố, p > 3 , nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3 

Suy ra tích (p - 1)(p + 1) chia hết cho 3 . Lại có 9 chia hết cho 3

=> 8p2 + 1 chia hết cho 3 (vô lí vì 8p2 + 1 là số nguyên tố lớn hơn 3)

Vậy p = 3 . Suy ra 2p + 1 = 7 là số nguyên tố. (đpcm)

28 tháng 9 2016

\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

Suy ra : \(A^2\le2\Rightarrow A\le\sqrt{2}\)

Vậy Max A = \(\sqrt{2}\) khi \(\hept{\begin{cases}x=y\\x=z\\x+y+z=\sqrt{2}\end{cases}\Leftrightarrow}x=y=z=\frac{\sqrt{2}}{3}\)

28 tháng 9 2016

tuyệt

28 tháng 5 2019

Áp dụng BĐT Cô si cho 3 số dương ta được

\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}\)

=> \(a^3+2\ge3a\)

Áp dụng tương tự có

\(ab+1\ge2\sqrt{ab.1}\)

=>\(ab+1\ge2\sqrt{ab}\)

=>\(\frac{a^3+2}{ab+1}\ge\frac{3a}{2\sqrt{ab}}\)

=> \(\frac{a^3+2}{ab+1}\ge\frac{3}{2}\sqrt{\frac{a}{b}}\)

Chứng minh tương tự thì Q\(\ge\frac{3}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\right)\)

Áp dụng cô si lần nữa thì \(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\ge\sqrt{\sqrt{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}}=1\)

=>Q\(\ge\frac{3}{2}\)

Min Q=3/2. 

28 tháng 5 2019

#)Mất công lắm tui ms tìm đc cách bải này đấy, xin đừng cho ăn gạch đá :v

Ta có (a^3+2)/(ab+1) = 1/2.(2a^3+4)/(ab+1)
Mà 2a^3+4= (a^3+a^3+1) +3
Mặt khác theo BĐT CBS ta có a^3+a^3+1≥ 3a^2
=>2a^3 +4≥ 3(a^2+1)
Tương tự với (b^3 + 2)/(bc + 1) và (c^3 + 2)/(ca + 1)
=>Q ≥ 3/2[(a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1)]
Theo BĐT CBS=> (a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1) ≥ 3.căn bặc ba của [(a^2+1)(b^2+1)(c^2+1)]/[(ab+1)(bc+1)(ac+1)]
Mà theo bất đẳng thức bunhicốpxki
=>(a^2+1)(b^2+1)≥(ab+1)^2
(b^2+1)(c^2+1)≥(bc+1)^2
(c^2+1)(a^2+1)≥(ac+1)^2
=>[(a^2+1)(b^2+1)(c^2+1)]/[(ab+1)(bc+1)(ac+1)]≥1
=> (a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1) ≥ 3
=> Q ≥9/2
Dấu bằng xảy ra <=> a=b=c=1

       P/s : trả công ( đùa tí :P )

           #~Will~be~Pens~#

20 tháng 4 2019

Để A lớn nhất thì tử phải nhỏ nhất hay \(x^2+3x+2\) nhỏ nhất

\(x^2+3x+2=x^2+2\cdot\frac{3}{2}+\frac{9}{4}+2-\frac{9}{4}\)

                            \(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi\(x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)

Min \(x^2+3x+2=-\frac{1}{4}\) khi x=-3/2

Vậy 

\(MaxA=\frac{2}{-\frac{1}{4}}=2\cdot\left(-4\right)=-8\)

12 tháng 1 2017

\(B+1=\frac{4x+3+x^2+1}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}\ge0\Rightarrow B\ge-1\\ \)

GTNN B=-1 khi x=-2