Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ
ta có x = −1/3 là tiệm cận đứng
Vì
nên đường thẳng y = -2/3 là tiệm cận ngang.
Vì
nên x = 2/3 là tiệm cận đứng.
Do
nên y = 0 là tiệm cận ngang.
Ta có:
nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
Vì
nên đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
TXĐ: D = (- ∞ ; - 2 ) ∪ ( 2 ;4) ∪ (4; + ∞ )
Do
Cho nên đồ thị hàm số có hai tiệm cận ngang
y = 4 khi x ⇒ + ∞
y = 6 khi x ⇒ - ∞
Vì
Cho nên đường thẳng x = 4 là tiệm cận đứng của đồ thị hàm số.
- Cách tìm tiệm cận ngang:
+ Tính các giới hạn
+ Nếu hoặc thì y = y o là tiệm cận ngang của đồ thị hàm số.
- Cách tìm tiệm cận đứng:
Đường thẳng x = x o là tiệm cận đứng của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
a) Ta có:
nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
Vì
nên đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
b) Từ
ta có x = −1/3 là tiệm cận đứng
Vì
nên đường thẳng y = -2/3 là tiệm cận ngang.
c) Vì
nên x = 2/3 là tiệm cận đứng.
Do
nên y = 0 là tiệm cận ngang.
d) Do
nên x = -1 là tiệm cận đứng.
Vì
nên y = 0 là tiệm cận ngang.
Vì
và
nên x = 2 là một tiệm cận đứng.
Do
và
nên x = -2 là tiệm cận đứng thứ hai.
Ta lại có
nên y = a là tiệm cận ngang.
Do
nên x = -1 là tiệm cận đứng.
Vì
nên y = 0 là tiệm cận ngang.