Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a cần tìm các số nguyên dương \(m\) và \(n\) sao cho:
\(A = \frac{3 m - 1}{2 n} \text{v} \overset{ˋ}{\text{a}} B = \frac{3 n - 1}{2 m}\)
đều là các số nguyên dương.
Bước 1: Phân tích điều kiện
Ta có:
- \(A = \frac{3 m - 1}{2 n} \in \mathbb{Z}^{+}\)
- \(B = \frac{3 n - 1}{2 m} \in \mathbb{Z}^{+}\)
Suy ra:
- \(2 n \mid \left(\right. 3 m - 1 \left.\right)\) hay \(3 m - 1 \equiv 0 \left(\right. m o d 2 n \left.\right)\)
- \(2 m \mid \left(\right. 3 n - 1 \left.\right)\) hay \(3 n - 1 \equiv 0 \left(\right. m o d 2 m \left.\right)\)
Bước 2: Dùng thử vài giá trị nhỏ
Thử với \(m = 1\):
- \(A = \frac{3 \left(\right. 1 \left.\right) - 1}{2 n} = \frac{2}{2 n} = \frac{1}{n}\) → không nguyên trừ khi \(n = 1\)
- Nếu \(m = 1 , n = 1\) ⇒ \(A = \frac{2}{2} = 1\), \(B = \frac{2}{2} = 1\) ✅
Thử \(m = 2\):
- \(A = \frac{6 - 1}{2 n} = \frac{5}{2 n}\)
- Không nguyên trừ khi \(2 n = 1\) hoặc 5 ⇒ không có \(n \in \mathbb{Z}^{+}\) phù hợp
Thử \(m = 3\):
- \(A = \frac{9 - 1}{2 n} = \frac{8}{2 n} = \frac{4}{n}\)
- Để nguyên ⇒ \(n \in \left{\right. 1 , 2 , 4 \left.\right}\)
Thử với các giá trị \(n\) trên:
- \(n = 1\): \(B = \frac{3 \left(\right. 1 \left.\right) - 1}{2 \cdot 3} = \frac{2}{6} = \frac{1}{3}\) ❌
- \(n = 2\): \(B = \frac{6 - 1}{6} = \frac{5}{6}\) ❌
- \(n = 4\): \(B = \frac{12 - 1}{6} = \frac{11}{6}\) ❌
Không thỏa mãn.
Quay lại với cặp đúng đã tìm được:
\(\left(\right. m , n \left.\right) = \left(\right. 1 , 1 \left.\right) \Rightarrow A = 1 , B = 1 (đ \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{nguy} \hat{\text{e}} \text{n}\&\text{nbsp};\text{d}ưo\text{ng})\)
Bước 3: Giả sử \(A = a , B = b \in \mathbb{Z}^{+}\)
Từ:
\(\frac{3 m - 1}{2 n} = a \Rightarrow 3 m - 1 = 2 a n \Rightarrow 3 m = 2 a n + 1 \Rightarrow m = \frac{2 a n + 1}{3}\)
Tương tự:
\(\frac{3 n - 1}{2 m} = b \Rightarrow 3 n - 1 = 2 b m \Rightarrow 3 n = 2 b m + 1 \Rightarrow n = \frac{2 b m + 1}{3}\)
Thế \(m\) từ biểu thức 1 vào biểu thức 2:
\(n = \frac{2 b \cdot \left(\right. \frac{2 a n + 1}{3} \left.\right) + 1}{3} = \frac{\frac{4 a b n + 2 b}{3} + 1}{3} = \frac{4 a b n + 2 b + 3}{9}\)
Đặt \(x = n\), phương trình:
\(x = \frac{4 a b x + 2 b + 3}{9} \Rightarrow 9 x = 4 a b x + 2 b + 3 \Rightarrow x \left(\right. 9 - 4 a b \left.\right) = 2 b + 3\)
⇒ \(x = \frac{2 b + 3}{9 - 4 a b}\)
Để \(x = n \in \mathbb{Z}^{+}\), mẫu phải chia hết tử ⇒ xét vài giá trị \(a , b\)
Thử \(a = 1 , b = 1\):
\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{5} = 1 \Rightarrow n = 1 \Rightarrow m = \frac{2 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right) + 1}{3} = \frac{3}{3} = 1\)
✅ Đúng rồi.
Các cặp khác?
Thử \(a = 2 , b = 1\):
\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 2 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{9 - 8} = \frac{5}{1} = 5 \Rightarrow n = 5 \Rightarrow m = \frac{2 \left(\right. 2 \left.\right) \left(\right. 5 \left.\right) + 1}{3} = \frac{21}{3} = 7\)
Kiểm tra:
- \(A = \frac{3 \cdot 7 - 1}{2 \cdot 5} = \frac{20}{10} = 2\)
- \(B = \frac{3 \cdot 5 - 1}{2 \cdot 7} = \frac{14}{14} = 1\)
✅ Đúng.
Kết luận:
Các cặp \(\left(\right. m , n \left.\right)\) nguyên dương sao cho cả hai biểu thức đều nguyên dương gồm:
- \(\left(\right. 1 , 1 \left.\right)\)
- \(\left(\right. 7 , 5 \left.\right)\)
Bạn có thể tìm thêm bằng cách thử các giá trị \(a , b \in \mathbb{Z}^{+}\) nhỏ, dùng công thức:
\(n = \frac{2 b + 3}{9 - 4 a b} , m = \frac{2 a n + 1}{3}\)


Làm ơn nhanh được không ạ? Tớ cần gấp, mai phải nộp cho cô rồi mà h chưa làm xong!
Đề câu a thiếu bạn ơi~
Cmr: Với mọi STN n thì 2n + 1 và \(\frac{n\left(n+1\right)}{2}\)là 2 số nguyên tố cùng nhau
Giải :
Gọi d là một ước chung của \(2n+1\)và \(\frac{n\left(n+1\right)}{2}\). Ta có :
\(2n+1⋮d;\frac{n\left(n+1\right)}{2}⋮d\)
\(\Rightarrow n\left(2n+1\right)⋮d;\frac{4.n\left(n+1\right)}{2}⋮d\)
\(\Rightarrow2n^2+1-2n\left(n+1\right)⋮d\)
\(\Rightarrow2n^2+n-2n^2+n^2\)
\(\Rightarrow n⋮d\)
Vì \(n⋮d\Rightarrow2n⋮d\) mà \(2n+1⋮d\) nên \(1⋮d\)
\(\Rightarrow d=1\)
Vậy với mọi STN n thì 2n + 1 và \(\frac{n\left(n+1\right)}{2}\)là 2 số nguyên tố cùng nhau.

mik chỉ giúp câu 2 đc thôi cong câu 1 thì mik có bài tương tự
1.
tìm số nguyên a để 2n+3 chia hết cho n-2
bài giải
ta có 2n=3 chia hết cho n-2
suy ra 2(n-2) + 7 chia hết cho n-2
suy ra n-2 thuộc Ư(7)={1:7}
ta có bảng giá trị
n-2 | 1 | 7 |
n | 3 | 9 |
đối chiếu | thỏa mãn | thỏa mãn |
vậy suy ra n=3 hoặc n =9
2. giải
từ 1 đến 9 có số chữ số là
(9-1):1+1x1= 9(c/s) [nhân 1 vì mỗi số có 1 c/s]
từ 10 dến 99 có scs ( số chữ số) là
(99-10):1+1x2=180(scs)
từ 100 đến 350 có scs là
(350-100):1+1x3=253(scs)
cần sủa dụng scs để đánh số các trang sách là
9+180+253=442 (scs)
vậy cần 442 scs để dánh dấu các trang sách