K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2016

a) Theo đề bài, ta có :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)

2y+11-13-35-515-15
2y0-22-44-614-16
y0-11-22-37-8
x30-3010-106-62-2

b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)

5x-1-14-6
5x05-5
x01-1
y-6015-10

 

16 tháng 3 2016

Ta có: 4/9<a/b

=>4b<9a hay 5a+4a>2b+2b

5a-2b>4a+2b

3>4a+2b(1)

Ta có: a/b<10/21

=>21a<10b hay 5a+16a<2b+8b

5a-2b<8b-16a(2)

Từ (1);(2) =>4a+2b<8b-16a

4a+16a<8b-2b

20a<6b

a/b<6/20

Vậy a/b<6/20 thì thỏa mãn đề*nghĩ v*

16 tháng 3 2016

đợi  e coi

2 tháng 2 2016

\(\frac{16^2-b^2+7}{a^3+78-43.2}=107\)

\(\Rightarrow16^2-b^2+7=107a^3+78.107-43.2.107\)

\(\Rightarrow256-b^2+7=107a^3+8346-9202\)

\(\Rightarrow263-b^2=107a^3-856\)

\(\Rightarrow263-b^2+856=107a^3\)

\(\Rightarrow1119=107a^3+b^2\)

Ta có:

\(107a^3<1119\)

\(\Rightarrow a^3\le10\)

Mà a là số tự nhiên nên \(a^3\in\left\{0;1;8\right\}\)

\(\Rightarrow a\in\left\{0;1;2\right\}\)

Với a=0 

\(b^2=1119\)

Mà 1119 không phải số chính phương 

-> Loại

Với a=1

\(b^2=1119-107.1^3=1012\)

Mà 1012 không là số chính phương

-> Loại

Với a=2

\(b^2=1119-107.8=263\)

263 không phải số chính phương

-> Loại

Vậy không có a, b thỏa mãn.

 

 

21 tháng 3 2016

\(\frac{30}{43}\)=\(\frac{1}{\frac{43}{30}}\)\(\frac{1}{1+\frac{13}{30}}\)=\(\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)=\(\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

=> a=1,b=2,c=3,d=4.

21 tháng 3 2016

Suy nghĩ đi, chỗ nào ko hiểu hỏi mình, lát mình quay lại giờ mình bận.

a: Ta có: \(2x^3-5x^2+8x-3=0\)

\(\Leftrightarrow2x^3-x^2-4x^2+2x+6x-3=0\)

=>2x-1=0

hay x=1/2

22 tháng 2 2016

a) Vì \(\left|x\left(x^2-3\right)\right|\ge0\) nên \(x\ge0\)

Ta có : |x(x2 - 3)| = x

<=> x(x2 - 3) = x  <=> x2 - 3 = x : x = 1 <=> x2 = 4

Vì x \(\ge\) 0 nên x = 2

4 tháng 3 2018

có sai đề ko

mk làm ko đc

4 tháng 3 2018

mk nghĩ đây là đề đúng

\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge\dfrac{3}{2}\)

Ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\\\dfrac{b}{1+c^2}=b-\dfrac{bc^2}{1+c^2}\\\dfrac{c}{1+a^2}=c-\dfrac{ca^2}{1+a^2}\end{matrix}\right.\)

Áp dụng bđt AM-GM ta có:

\(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)

\(\Rightarrow a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\) (1)

C/m tg tự ta có:

\(\left\{{}\begin{matrix}b-\dfrac{bc^2}{1+c^2}\ge b-\dfrac{bc}{2}\\c-\dfrac{ca^2}{1+a^2}\ge c-\dfrac{ac}{2}\end{matrix}\right.\) (2)

Chứng minh điều sau:\(ab+bc+ca\le3\)

Ta có:

\((a+b+c)^2\ge3(ab+bc+ca)\)

\(\Leftrightarrow9\ge3ab+3bc+3ca\)

\(\Leftrightarrow ab+bc+ca\le3\)

Từ (1) và (2)

\(\Rightarrow VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\)

\(ab+bc+ca\le3\)

Nên \(VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

=> ĐPCM