Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(\left(3x-2\right)\left(2y-3\right)=1\)
\(\Rightarrow\)Trường hợp 1 :
\(\hept{\begin{cases}3x-2=1\\2y-3=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
\(\Rightarrow\)Trường hợp 2 :
\(\hept{\begin{cases}3x-2=-1\\2y-3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}}\)
Vậy ....
1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)
=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)
=> \(15-x+x-12-5+x=7\)
=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)
=> \(\left(15-12-5\right)-7=3x\)
=> \(3x=-2-7\)
=> \(3x=-9\)
=> \(x=\frac{-9}{3}=-3\)
b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)
=> \(x-57-42-23-x=13-47+25-32+x\)
=> \(x-x+x=13-47+25-32+57+42+23\)
=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)
=> \(x=36-104+82-74\)
=> \(x=-60\)
d/ \(\left(x-3\right)\left(2y+1\right)=7\)
Vì 7 là số nguyên tố nên ta có 2 trường hợp:
TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).
TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).
Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).
Ta có : \(143=11.13=13.11=1.143=143.1\)
Từ đây ta có bảng :
x + 1 | 11 | 13 | 1 | 143 |
x | 10 | 12 | 0 | 142 |
2y – 5 | 13 | 11 | 143 | 1 |
y | 9 | 8 | 74 | 3 |
==>(x+1+21)chia hết cho (x+1)
Mà (x+1) chia hết cho (x+1)
Nên 21 chia hết cho ( x+1)
==> x+1 € Ư(21)
==>x+1€{1;-1;3;-3;7;-7;21;-21}
Ta có:
TH1: x+1=1
x=1-1
x=0
TH2: x+1=-1
x=-1-1
x=-2
TH3: x+1=3
x=3–1
x=2
TH4: x+1=-3
x=-3-1
x=-4
TH5: x+1=7
x=7-1
x=6
TH6: x+1=-7
x=-7-1
x=-8
TH7: x+1=21
x=21-1
x=20
TH8:
x+1=-21
x=-21-1
x=-22
Vậy x€{0;-2;2;-4;6;-8;20;-22}
(x—2).(2y+1)=17
==> x—2=1 và 2y+1=17
Hay x—2=17 và 2y+1=17
Ta có
\(\hept{\begin{cases}x-2=1\\2y+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1+2\\2y=17-1\end{cases}}\hept{\begin{cases}x=3\\2y=16\end{cases}}\)
\(\hept{\begin{cases}x=3\\y=16:2\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=8\end{cases}}\)
Ta lại có:
\(\hept{\begin{cases}x-2=17\\2y+1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=17+2\\2y=1+1\end{cases}}\Rightarrow\hept{\begin{cases}x=19\\2y=2\end{cases}\Rightarrow\hept{\begin{cases}x=19\\y=2:2\Rightarrow\end{cases}}\hept{\begin{cases}x=19\\y=1\end{cases}}}\)
dấu cộng thành dấu nhân nha các bn mình lộn đề
(x+1).(2y--1)=12
=>x+1;2y-1thuộc ước của 12={1,2,3,4,6,12}
ta có: