Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
1, \(x\div y\div z=3\div8\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
\(\Rightarrow\frac{3x+y-2z}{9+8-10}=\frac{x}{3}=\frac{y}{8}=\frac{z}{10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot8=16\\z=2\cdot5=10\end{cases}}\)
vậy_
các phần sau tương tự
1, \(x:y:z=3:8:5;3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\\\frac{y}{8}=2\Rightarrow y=16\\\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\end{cases}}\)
Vậy....
2, \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3};4x-3y-2z=36\)
\(\Rightarrow\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=\frac{-36}{8}=\frac{-9}{4}\)
Làm tương tự để tìm x;y;z
3, \(x:y:z=3:5:\left(-2\right);5x-y+3z=124\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{\left(-2\right)}\)
\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
\(\Rightarrow\hept{\begin{cases}\frac{5x}{15}=31\Rightarrow5x=465\Rightarrow x=93\\\frac{y}{5}=31\Rightarrow y=155\\\frac{3z}{-6}=31\Rightarrow3z=-186\Rightarrow z=-62\end{cases}}\)
Vậy .....
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=>\frac{x-1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(z-3\right)}{12}=>\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-\left(1-4+9\right)}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
Do đó: \(\frac{x-1}{2}=1=>x-1=2=>x=3\)
\(\frac{y-2}{3}=1=>y-2=3=>y=5\)
\(\frac{z-3}{4}=1=>z-3=4=>z=7\)
Vậy x=3;y=5;z=7
Ta có: \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\)
\(\Rightarrow\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(=\frac{4.\left(3x-2y\right)}{4.4}=\frac{3.\left(2z-4x\right)}{3.3}=\frac{2.\left(4y-3z\right)}{2.2}\)
\(=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\frac{0}{29}=0\)
\(\Rightarrow\begin{cases}12x-8y=0\\6z-12x=0\\8y-6z=0\end{cases}\)\(\Rightarrow\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\)\(\Rightarrow12x=8y=6z\)
= \(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}=\frac{x+y-z}{\frac{1}{12}+\frac{1}{8}-\frac{1}{6}}=\frac{-10}{\frac{1}{24}}=-10.24=-240\)
\(\Rightarrow\begin{cases}x=-240.\frac{1}{12}=-20\\y=-240.\frac{1}{8}=-30\\z=-240.\frac{1}{6}=-40\end{cases}\)
Vậy x = -20; y = -30; z = -40
các bạn ơi giải nhanh giúp mình đi
Đặt cái thứ nhất bằng k, rồi rút x;y;z theo k
thay vào cái thứ 2 rồi rút gọn tính dc k;
thay ngược lại tìm x;y;z