Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Ta có: \(3x=2y\Rightarrow y=\frac{3}{2}x\)\(;\)\(3x=\frac{3}{2}z\Rightarrow z=\frac{3}{\frac{3}{2}}x\Rightarrow z=2x\)
\(\Rightarrow x+y+z=x+\frac{3}{2}x+2x=4,5x=18\Rightarrow x=4\)
\(\Rightarrow y=\frac{3}{2}x=\frac{3}{2}.4=6\)\(;\)\(z=2x\Rightarrow z=2.4=8\)
(Dấu . là dấu nhân nha bạn)
Ta có: x/2=y/4=z/6
Nên: x-y+z/2-4+6=8/4
Suy ra: x/2 = 8/4 và x=4
y/4=8/4 và y=8
z/6=8/4 và z=6
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x}{2}=\frac{-y}{-4}=\frac{z}{6}=\frac{x+\left(-y\right)+z}{2+\left(-4\right)+6}=\frac{8}{4}=2\)
=> x = 2.2 = 4
y = 4.2 = 8
z = 6.2 = 12
Ta có: x/4=y/3=z/5
=x^2/16=y^2/9=z^2/25
=x^2+y^2+z^2/16+9+25
=200/50
=4
Từ x^2/16=4
=x^2=4.16=64
=x^2=8^2
=x=8
y^2/9=4
=y^2=4.9=36
=y^2=6^2
=y=6
z^2/25=4
=z^2=4.25=100
=z^2=10^2
=z=10
Vậy x=8,y=6,z=10
P/s:Bạn thông cảm,máy nhà mình ko có dấu suy ra.
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{5};x^2+y^2+z^2=200\)
<=>\(\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{z^2}{5^2}\)
<=>\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{16+9+25}\)\(=\)\(\frac{200}{50}=4\)
=>\(\hept{\begin{cases}\frac{x}{4}=4\\\frac{y}{3}=4\\\frac{z}{5}=4\end{cases}=>}\hept{\begin{cases}x=16\\y=12\\z=20\end{cases}}\)
vậy\(\hept{\begin{cases}x=16\\y=12\\z=20\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=\frac{x+y+z}{y+z-2+x+z+1+x+y+1}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\cdot\frac{x}{y+z-2}=\frac{1}{2}\)
\(\Rightarrow2x=y+z-2\)
\(3x=x+y+z-2=\frac{1}{2}-2=-\frac{3}{2}\)
\(\Rightarrow x=-\frac{1}{2}\)
\(\cdot\frac{y}{x+z+1}=\frac{1}{2}\)
\(\Rightarrow2y=x+z+1\)
\(\Rightarrow3y=x+y+z+1=\frac{1}{2}+1=\frac{3}{2}\)
\(\Rightarrow y=\frac{1}{2}\)
\(z=\left(x+y+z\right)-x-y=\frac{1}{2}-\left(-\frac{1}{2}\right)-\frac{1}{2}=\frac{1}{2}\)
Vậy ...
- Vì \(\frac{x}{5}=\frac{y}{3}\)=) \(3x=5y\)=) \(x=\frac{5y}{3}\)
=) \(x^2-y^2=4\)=) \(\left(\frac{5y}{3}\right)^2-y^2=4\)
=) \(\frac{25y^2}{9}-y^2=4\)=) \(\frac{25y^2}{9}-\frac{9y^2}{9}=\frac{36}{9}\)
=) \(25y^2-9y^2=36\)=) \(16y^2=36\)=) \(y^2=\frac{36}{16}=\frac{9}{4}\frac{3^2}{2^2}\)=) \(y=\frac{3}{2}\)
=) \(x=\frac{5.\frac{3}{2}}{3}=\frac{\frac{15}{2}}{3}=\frac{5}{2}\)
a) Đặt x/5 = y/3 = k => x = 5k ; y = 3k
Ta có: x2 - y2 = 4
=> (5k)2 - (3k)2 = 4
=> 25k2 - 9k2 = 4
=> 16k2 = 4
=> k2 = 1/4
=> k = ±1/2
Với k = 1/2 thì x = 5/2, y = 3/2
Với k = -1/2 thì x = -5/2, y = -3/2
b) Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+z+x+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=> x + y + z = 1/2 ; x/y+z+1 = 1/2 ; y/z+x+1 = 1/2 ; z/x+y-2 = 1/2
=> \(\hept{\begin{cases}y+z+1=2x\\z+x+1=2y\\x+y-2=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)(đk x+y+z\(\ne0\)
\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=0,5\)
\(\Rightarrow y+z=0,5-x,x+z=0,5-y,x+y=0,5-z\)
\(\Rightarrow\frac{0,5-x+1}{x}=2\Rightarrow\frac{1,5-x}{x}=2\Rightarrow1,5-x=2x\Rightarrow3x=1,5\Rightarrow x=\frac{1}{2}\)
\(\Rightarrow\frac{0,5-y+2}{y}=2\Rightarrow\frac{2,5-y}{y}=2\Rightarrow2,5-y=2y\Rightarrow3y=2,5\Rightarrow y=\frac{5}{6}\)
\(\Rightarrow z=0,5-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)
Vậy \(x=\frac{1}{2},y=\frac{5}{6},z=-\frac{5}{6}\)