Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt bt=k
x=2k+1;y=3k+2;z=4k+3
2x+3y-z=4k+2+9k+6-4k-3=9k+5=50
k=5
x=11;y=17;z=23
ÁP dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)<=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)
=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\) <=> \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\)
Đặt:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
Ta có:
\(x=2k\)
\(y=3k\)
\(z=5k\)
Thế vào xyz = 810, ta có:
\(2k.3k.5k=810\)
\(30.k^3=810\)
\(k^3=27\)
\(\Rightarrow k=3\)
Tới đây tự tính luôn ok :))
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{2.2+3.3-4}=\frac{50-5}{9}=5\)
x-1=10=> x=11
y-2=15=>y=17
z-3=20=>z=23
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
Từ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{3-z}{-4}\)
Ap dụng tính chất của tỉ lệ thức ta có \(\frac{2x-2}{4}=\frac{2x-2+3y-6+3-z}{4+9-4}\)=\(\frac{2x+3y-z-5}{9}\)
Lại có 2x+3y-z=50\(\Rightarrow\frac{2x-2}{4}=\frac{50-5}{9}=5\Rightarrow2x-2=20\Rightarrow x=11\)
Tương tự \(\frac{y-2}{3}=5\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z=23\)
Vậy x=11,y=17,z=23
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, Ta có:
\(\frac{x-1+y-2-\left(z-3\right)}{2+3-4}\)=\(\frac{2x-2+3y-6-z+3}{4+9-4}\)
=\(\frac{2x-3y-z-2-6+3}{9}\)=\(\frac{2x-3y-z-\left(2+6-3\right)}{9}\)
=\(\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)
\(\frac{2x-2}{4}=5\)x = 11
\(\frac{3y-6}{9}=5\) y=17
\(\frac{z-3}{4}=5\)
z = 23
Ta có : 3x = 2y => x/2 = y/3
7x = 5z => x/5 = z/7
=> x/2 = y/3 ; x/5 = z/7
=> x/10 = y/15 ; x/10 = z/21
=> x/10 = y/15 = z/21
Áp dụng tính chất dãy tỉ số bằng nhau :
x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
đến đây xét x,y,z
Câu b tương tự
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x+3y-z-2-6+3}{4+9-4}=\frac{45}{9}=5\)
Đến đây thì tính x-1, y-2, z-3. Từ đó tìm đc x,y,z
Sửa đề: Tìm các số x,y,z biết:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x + 3y - z = 55 .
Giải
Áp dụng tính chất tỉ dãy số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
\(=\frac{2x+3y-z-2-6+3}{4+9-4}=\frac{45}{9}=5\)
\(\Rightarrow\hept{\begin{cases}x-1=5.2+1\\y-2=5.3+2\\z-3=5.4+3\end{cases}\Rightarrow\hept{\begin{cases}x-1=11\\y-2=17\\z-3=23\end{cases}}\Rightarrow\hept{\begin{cases}x=12\\y=19\\z=26\end{cases}}}\)