\(\frac{x}{3}\)=  \(\frac{y}{5}\)=   
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\\z=7k\end{cases}}\)

Khi đó : xyz = - 840

<=> 3k.5k.7k = - 840

=> 105.k3 = -840

=> k3 = (-2)3

=> k = - 2

=> \(\hept{\begin{cases}x=-2.3=-6\\y=-2.5=-10\\z=-2.7=-14\end{cases}}\)

21 tháng 11 2019

đặt:\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\)

Ta có: \(\hept{\begin{cases}x=3k\\y=\\z=7k\end{cases}5k}\)

vậy ta có: xyz= 3k.5k.7k=-840

                          105.k^3=-840

                                 k^3=8

suy ra k=2

vạy x=6, y=10, z=14

12 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tĩ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

Suy ra

x = (-2) . 9 = -18

y = (-2) . 12 = -24

z = (-2) . 15 = -30

 

12 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Suy ra 

x = 2 . 10 = 20

y = 2 . 6 = 12

z = 2 . 21 = 42

 

7 tháng 12 2019

2) Đề thiếu rồi bạn.

3)

Ta có:

\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)\(x.y.z=20\)

Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=12k\\y=9k\\z=5k\end{matrix}\right.\)

Có: \(x.y.z=20\)

=> \(12k.9k.5k=20\)

=> \(540.k^3=20\)

=> \(k^3=20:540\)

=> \(k^3=\frac{1}{27}\)

=> \(k=\frac{1}{3}.\)

Với \(k=\frac{1}{3}.\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.\frac{1}{3}=4\\y=9.\frac{1}{3}=3\\z=5.\frac{1}{3}=\frac{5}{3}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(4;3;\frac{5}{3}\right).\)

Chúc bạn học tốt!

14 tháng 7 2019

\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49

Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)

Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)

14 tháng 7 2019

\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186

Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

10 tháng 8 2019

Đat:\(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=k\) 

\(\Rightarrow x-\frac{1}{y}=\frac{1}{6}k;y-\frac{1}{z}=\frac{1}{3}k;z-\frac{1}{x}=\frac{1}{2}k\) 

\(\Rightarrow\left(x-\frac{1}{y}\right)\left(y-\frac{1}{z}\right)\left(z-\frac{1}{x}\right)=\left(xyz-\frac{1}{xyz}\right)-\left(x-\frac{1}{y}\right)-\left(y-\frac{1}{z}\right)-\left(z-\frac{1}{x}\right)=0=\frac{k^3}{36}\)

 \(\Rightarrow k=0\Rightarrow xy=yz=zx=1\Rightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\left(giaipt\right)\)

18 tháng 4 2020

a) ta có : \(\frac{x-2}{x-2}=1\Rightarrow1=\frac{x+4}{x+7}\)\(\Rightarrow x+4=x+7\Rightarrow x\in\varnothing\)

b)\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{1}{5}.\frac{x}{3}=\frac{1}{5}.\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{1}{4}.\frac{y}{5}=\frac{1}{4}.\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2}{2}.\frac{x}{15}=\frac{3}{3}.\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

áp dụng t/c day t/s = nhau

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x-3y+z}{30-60+28}=\frac{6}{-2}=-3\)

\(\frac{x}{15}=-3\Rightarrow x=-45\)

\(\frac{y}{20}=-3\Rightarrow y=-60\)

\(\frac{z}{28}=-3\Rightarrow z=-84\)

c)đặt  k rồi giải típ ik mik lười quá