\(x,y,z\) biết : \(\frac{\left(y+z+1\right)}{x}=\frac{\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

Theo tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)

( Vì x + y + z \(\ne\)0 ) Do đó, x +y + z = 0,5

Thay kết quả này vào đầu đề bài ta được :

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)

tức là

\(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)

Vậy \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{-5}{6}\)

29 tháng 8 2017

hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi

12 tháng 9 2018

Lí luận chung cho cả 3 câu :

Vì GTTĐ luôn lớn hơn hoặc bằng 0 

a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)

b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)

c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)

\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)

\(\Rightarrow2\left(x+y+z\right)=0,2\)

\(\Rightarrow x+y+z=0,1\)

Từ đây tìm đc x, y, z

28 tháng 9 2017

Áp dụng tính chất tỉ lệ thức, ta có:

\(\frac{y+z-x}{x}+\frac{z+x-y}{y}+\frac{x+y-z}{2}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)

Do đó ta có:

\(1+\frac{x}{y}=\frac{z+x-y}{y}+\frac{y+z-x}{y}=\frac{2z}{y}\)

Tương tự ta có:

\(1+\frac{y}{z}=\frac{2x}{z}\)và \(1+\frac{z}{x}=\frac{2y}{x}\)

Do đó biểu thức sẽ bằng:

\(\frac{2x}{z}.\frac{2y}{x}.\frac{2z}{y}=\frac{8xyz}{xyz}=8\)

28 tháng 9 2017

Áp dụng tính chất tỉ lệ thức có:

(y+z-x)/x + (z+x-y)/y + (x+y-z)/z= (y+z-x+z+x-y+x+y-z)/(x+y+z)= (x+y+z)/(x+y+z)=1

=>y+z-x=x ; z+x-y=y và x+y-z=z

Do đó ta có:

(1 + x/y)= [(z+x-y)/y + (y+z-x)/y] =2z/y

Tương tự có:

1 + y/z=2x/z và 1 + z/x =2y/x

Do đó biểu thức sẽ bằng :

2x/z . 2y/x . 2z/y = 8xyz/xyz =8

7 tháng 6 2016

a). Nhận xét rằng từng số hạng của tổng vế phải (VP) đều >=0 nên VP >= 0. Để dấu "=" xảy ra thì từng số hạng trong tổng VP đều bằng 0. Do đó ta có: x= 1/2; y=-3/2; z=-3/2.

b) Tương tự, VP>=0 để VP<=0 = VT chỉ xảy ra khi đạt dấu "=". Cho từng số hạng của VP =0, ta được: x=1; y=2/3; z=-1.

5 tháng 7 2015

a) theo tính chất của dãy tỉ số bằng nhau có 

\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}=\frac{-\left(x+y+z\right)}{x+y+z}=-1\)

=> x - y - z = - x  => 2.x = y + z

    y - x - z = - y  => 2.y = x+z

    z - x - y = - z => 2.z = x+y

Ta có: \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=\frac{2xyz}{xyz}=2\)

b) Vì \(\left|x+3y-1\right|\ge0\)\(-3\left|y+3\right|\le0\)

=> \(\left|x+3y-1\right|=-3\left|y+3\right|\) khi \(\left|x+3y-1\right|=-3\left|y+3\right|=0\)

=> x+ 3y - 1 = 0 và y + 3 = 0

=> x = 1 - 3y và y = -3 => x = 1- 3(-3) = 10; y = -3

=> C = 4.102.(-3) + 2.10.(-3)2 - (-3)2 = -1029

 

24 tháng 10 2018
Sorry mk chưa hk thông cảm
24 tháng 10 2018

help me

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3