
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


2x=3y;5y=7z
=>x/3=y/2;y/7=z/5
=>x/21=x/14;y/14=z/10
=>x/21=y/14=z/10
=>3x/63=7y/98=5z/50
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
3x/63=7y/98=5z/50=3x-7y+5z/63-98+50=30/15=2
suy ra : 3x/63=2 =>3x=126 =>x=126:3=42
7y/98=2 =>7y =196 =>y=196:7=28
5z/50=2 =>5z = 100 => z=100:5=20
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ 1 và 2
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số = nhau ta có
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\frac{x}{21}=2\Rightarrow x=42\)
\(\frac{y}{14}=2\Rightarrow y=28\)
\(\frac{z}{10}=2\Rightarrow z=20\)

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}=\frac{7y}{14};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{2y}{14}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}=\frac{3x+5y-7z}{63+70-70}=\frac{30}{63}=\frac{10}{21}\)
\(\frac{3x}{63}=\frac{10}{21}\Rightarrow x=\frac{10}{21}.63:3=10\)
\(\frac{5y}{70}=\frac{10}{21}\Rightarrow y=\frac{10}{21}.70:5=\frac{20}{3}\)
\(\frac{7z}{70}=\frac{10}{21}\Rightarrow z=\frac{10}{21}.70:7=\frac{100}{21}\)

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)

Từ phương trình 5y=7z5 y equals 7 z5𝑦=7𝑧, có thể suy ra z=57yz equals 5 over 7 end-fraction y𝑧=57𝑦. Bước 2: Thay thế vào phương trình thứ ba Các biểu thức của xx𝑥và zz𝑧theo yy𝑦sẽ được thay vào phương trình 3x+y−z=673 x plus y minus z equals 673𝑥+𝑦−𝑧=67.
Thay thế, phương trình trở thành 3(32y)+y−57y=673 open paren 3 over 2 end-fraction y close paren plus y minus 5 over 7 end-fraction y equals 67332𝑦+𝑦−57𝑦=67. Bước 3: Giải phương trình để tìm giá trị của yy𝑦 Phương trình sẽ được đơn giản hóa và giải để tìm yy𝑦:
92y+y−57y=679 over 2 end-fraction y plus y minus 5 over 7 end-fraction y equals 6792𝑦+𝑦−57𝑦=67.
Quy đồng mẫu số, ta có 6314y+1414y−1014y=6763 over 14 end-fraction y plus 14 over 14 end-fraction y minus 10 over 14 end-fraction y equals 676314𝑦+1414𝑦−1014𝑦=67.
63+14−1014y=67the fraction with numerator 63 plus 14 minus 10 and denominator 14 end-fraction y equals 6763+14−1014𝑦=67.
6714y=6767 over 14 end-fraction y equals 676714𝑦=67.
y=67×1467=14y equals the fraction with numerator 67 cross 14 and denominator 67 end-fraction equals 14𝑦=67×1467=14. Bước 4: Tìm giá trị của xx𝑥và zz𝑧 Giá trị của yy𝑦sẽ được sử dụng để tìm xx𝑥và zz𝑧:
x=32y=32×14=21x equals 3 over 2 end-fraction y equals 3 over 2 end-fraction cross 14 equals 21𝑥=32𝑦=32×14=21.
z=57y=57×14=10z equals 5 over 7 end-fraction y equals 5 over 7 end-fraction cross 14 equals 10𝑧=57𝑦=57×14=10. Kết quả cuối cùng Các giá trị của xx𝑥, yy𝑦, và zz𝑧là x=21x equals 21𝑥=21, y=14y equals 14𝑦=14, và z=10z equals 10𝑧=10.
Vì 2x=3y nên 10x=15y
Vì 5y=7z nên 15y=21z
Suy ra 10x=15y=21z
Suy ra 10x/210=15y/210=21z/210
Suy ra x/21=y/14=z/10
Suy ra 3x/63=y/14=z/10
Suy ra 3x/63=y/14=z/10=3x-y+z/63-14+10=67/67=1 ( tính chất dãy tỉ số bằng nhau)
Suy ra +)3x/63=1 suy ra x=21
+) y/14=1 suy ra y=14
+)z/10=1 suy ra z=10

Tìm các số thực x, y, z thỏa mãn:
2x=3y, 5y=7z và 3x+y-z=67
Chúng ta có ba điều kiện (ba phương trình) mà ba số x, y, z cần thỏa mãn:
- \(2 x = 3 y\)
- \(5 y = 7 z\)
- \(3 x + y - z = 67\)
Chúng ta sẽ tìm cách biểu diễn các số x và z theo y để đưa về một phương trình chỉ còn y.
Từ điều kiện thứ nhất: \(2 x = 3 y\)
Nếu ta coi \(y\) là một số nào đó, ví dụ \(y = 2\), thì \(2 x = 3 \times 2 = 6\), suy ra \(x = 3\).
Nếu ta coi \(y = 4\), thì \(2 x = 3 \times 4 = 12\), suy ra \(x = 6\).
Ta thấy rằng \(x\) luôn bằng \(\frac{3}{2}\) lần \(y\). Hay nói cách khác, \(x = \frac{3}{2} y\).
Từ điều kiện thứ hai: \(5 y = 7 z\)
Nếu ta coi \(y = 7\), thì \(5 \times 7 = 7 z\), suy ra \(35 = 7 z\), vậy \(z = 5\).
Nếu ta coi \(y = 14\), thì \(5 \times 14 = 7 z\), suy ra \(70 = 7 z\), vậy \(z = 10\).
Ta thấy rằng \(z\) luôn bằng \(\frac{5}{7}\) lần \(y\). Hay nói cách khác, \(z = \frac{5}{7} y\).
Bây giờ, chúng ta sẽ thay \(x = \frac{3}{2} y\) và \(z = \frac{5}{7} y\) vào điều kiện thứ ba: \(3 x + y - z = 67\).
Ta có:
\(3 \times \left(\right. \frac{3}{2} y \left.\right) + y - \left(\right. \frac{5}{7} y \left.\right) = 67\)
Thực hiện phép nhân:
\(\frac{9}{2} y + y - \frac{5}{7} y = 67\)
Để cộng trừ các phân số này, chúng ta cần tìm mẫu số chung. Mẫu số chung của 2 và 7 là 14.
\(\frac{9 \times 7}{2 \times 7} y + \frac{1 \times 14}{1 \times 14} y - \frac{5 \times 2}{7 \times 2} y = 67\)
\(\frac{63}{14} y + \frac{14}{14} y - \frac{10}{14} y = 67\)
Bây giờ, cộng trừ các phân số có cùng mẫu số:
\(\frac{63 + 14 - 10}{14} y = 67\)
\(\frac{67}{14} y = 67\)
Để tìm \(y\), ta chia cả hai vế cho \(\frac{67}{14}\):
\(y = 67 \div \frac{67}{14}\)
\(y = 67 \times \frac{14}{67}\)
\(y = 14\)
Bây giờ chúng ta đã tìm được \(y = 14\). Ta sẽ tìm \(x\) và \(z\) dựa vào \(y\).
\(x = \frac{3}{2} y = \frac{3}{2} \times 14 = 3 \times 7 = 21\)
\(z = \frac{5}{7} y = \frac{5}{7} \times 14 = 5 \times 2 = 10\)
Vậy, ba số cần tìm là \(x = 21 , y = 14 , z = 10\).
Vì 2x=3y nên 10x=15y
Vì 5y=7z nên 15y=21z
Suy ra 10x=15y=21z
Suy ra 10x/210=15y/210=21z/210
Suy ra x/21=y/14=z/10
Suy ra 3x/63=y/14=z/10
Suy ra 3x/63=y/14=z/10=3x-y+z/63-14+10=67/67=1 ( tính chất dãy tỉ số bằng nhau)
Suy ra +)3x/63=1 suy ra x=21
+) y/14=1 suy ra y=14
+)z/10=1 suy ra z=10


2x = 3y => 10x=15y
5y = 7z => 15y=21z
=> 10x=15y=21z =>x=2,1z
y=1,4z
Mà : 3x - 7y + 5z = 30 => 6,3z - 9,8z + 5z=30 =>1,5z=30
=>z=20
y=28
x=42
Từ \(2x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{7}=\frac{y}{2}.\frac{1}{7}=\frac{x}{21}=\frac{y}{14}\)( 1 )
Từ \(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}=\frac{y}{7}.\frac{1}{2}=\frac{z}{5}.\frac{1}{2}=\frac{y}{14}=\frac{z}{10}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Đặt \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=k\)
\(\Rightarrow\hept{\begin{cases}x=21k\\y=14k\\z=10k\end{cases}}\)
Thay vào \(3x+5z-7y=30\)ta có ;
\(3.21k+5.10k-7.14k=30\)
\(63k+50k-98k=30\)
\(15k=30\)
\(k=2\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=21.2\\y=14.2\\z=10.2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z
+) 10x=15y=21z ( Quy dong)
+)10x/210 = 15y/210 = 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( Rut gon)
+) 3x/63 = 7y/98 = 5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2
+ x/21 = 2 => ............ phan nay minh chua xong neu xong thi minh pm not cho
Giúp mik vs, cảm ơn mọi người