![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình 47:
x+ 900 + 550 = 1800
⇒ x = 1800 – ( 900+ 550)= 350
Hình 48:
x+ 400 + 300 = 1800
⇒ x= 1800 – ( 400+ 390)= 1100
Hình 49:
x+ x + 500= 1800
⇒2x= 1800 – 500 = 1300
⇒ x= 1300 : 2 = 650
Hình 50:
y = 600 + 400= 1000 (Mỗi góc ngoài của một tam giác bằng tổng hai góc không kề với nó)
Ta có: x + 400 = 1800 (kề bù)
⇒x = 1800 – 400 = 1400
Hình 51:
Trong ∆ ABC có
(400+ 400) + 700 + y = 1800
⇒ y + 1500 = 1800
⇒ y = 1800 – 1500= 300
Trong ∆ ACD có:
x + 400 + 300= 1800 ( Góc y = 300 giải được ở trên)
x= 1800 – ( 400+ 300)= 1100
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình 55:
Ta có ∠A + ∠AIH = 900 (Vì tam giác AHI cân tại H) ⇒∠AIH = 900 – 400 = 500
mà ∠AIH = ∠BIK( 2 góc đối đỉnh) ⇒∠BIK = 500
Ta lại có: ∠IBK +∠BIK = 900 (Vì tam giác IKB cân tại K)
⇒ ∠IBK = 900 – 500 = 400
⇒ x = 400
Hình 56:
Các em có thể giải theo cách của bài 55 tuy nhiên là hơi dài và chúng ta có cách khác làm nhanh hơn. (Áp dụng hình 56 và các hình sau nhé)
Ta có :
Xét tam giác ABD cân tại D ta có ∠ABD + ∠BAD = 900
Xét tam giác ACE cân tại E ta có ∠ACE + ∠EAC = 900
Mà ta có ∠BAD cũng chính là góc ∠EAC
Suy ra ∠ABD = ∠ACE = 250
Vậy ∠ABD = 250 => x = 250
Hình 57:
Xét tam giác MNP vuông tại M ⇒ ∠MNP+ ∠MPN = 900
⇔ 600 + ∠MPN = 900
⇒ ∠MPN = 900 – 600 = 300
Tiếp tục xét tam giác IMP vuông tại I ⇒ ∠IMP + ∠IPM = 900
⇔ ∠IMP + 300 = 900 ( vì∠IPM = ∠MPN )
⇒∠IMP = 900 – 300 = 600
Vậy ∠IMP = 600 => x = 600
Hình 58:
Ta có
Xét tam gác HAE vuông tại H nên ta có ∠HEA = 900 – ∠HAE = 900 – 550 = 350
hay chính là góc ∠BEK = 350
Ta có: ∠HBK = ∠BEK + ∠BKE (Góc ngoài tam giác BKE)
⇒ ∠HBK = 350+ 900 = 1250
Vậy x = 1250
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tổng của x và y là x + y
b) Tích của x và y là xy
c) Tích của tổng x và y với hiệu của x và y là (x + y)(x – y)
a) Tổng của x và y là x + y
b) Tích của x và y là xy
c) Tích của tổng x và y với hiệu của x và y là (x + y)(x – y)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: 1.120 = 2.60 = 4.30 = 5.24 =8.15 = 120
Nên x và y là hai đại lượng tỉ lệ nghịch với nhau.
b) Vì 5.12,5 ≠ 6.10 nên x và y không tỉ lệ nghịch với nhau.
Gọi k là hệ số tỉ lệ giữa x và y
a) Ta có:
\(1.120=2.60=4.30=5.24=8.15=k=120\)
\(\Rightarrow\) Hai đại lượng x và y tỉ lệ nghịch với nhau.
b) Ta có:
\(2.30=3.20=4.15=6.10=k=120\)
Mà: \(5.12,5=62.5\ne120\)
\(\Rightarrow\) Hai đại lượng x và y không tỉ lệ nghịch với nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác ABC có AB = AC (theo đề bài)
Suy ra: tam giác ABC cân tại A( dựa theo định nghĩa tam giác cân)
=> góc ABC = góc ACB ( dựa theo tính chất tam giác cân)
=> góc ABC = góc ACB = \(\left(180^0-36^0\right):2=72^0\)
Có góc ACB + góc ACE = \(180^0\) (2 góc kề bù)
=> góc ACE = \(180^0\)- góc ACB
=> góc ACE = \(180^0-72^0=108^0\)
Tam giác ACE có góc CAE + góc CEA + góc ACE = \(180^0\)(tổng 3 góc của 1 tam giác)
=> góc CEA = \(180^0-\left(108^0+36^0\right)=36^0\)(*)
Tam giác ADE có góc BDA = góc CEA = \(36^0\)
=> tam giác ADE cân tại A ( dựa theo tính chất của tam giác cân)
b,Ta có:
\(x:5=y:2=\dfrac{x}{5}=\dfrac{y}{2};x-y=2\)
Áp dụng tcdtsbn , ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{30}{3}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=50\\y=20\end{matrix}\right.\)
d, Ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{2x}{2.2}=\dfrac{y}{5}=\dfrac{2x}{4}=\dfrac{y}{5}\)
Áp dụng tcdtsbn , ta có:
\(\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{2x-y}{4-5}=\dfrac{18}{-1}=-18\)
\(\Rightarrow\left\{{}\begin{matrix}x=-36\\y=-90\end{matrix}\right.\)
Lần sau bn chụp dọc nha bn , đừng có chụp ngang nhìn chắc gãy cổ mất thôi!