\(\frac{X}{-3}=\frac{Y}{-4}=\frac{Z}{5}\)và x+y+z=-144

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2015

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{X}{-3}=\frac{Y}{-4}=\frac{Z}{5}=>\frac{X+Y+Z}{-3+-4+5}=\frac{-144}{-2}=72\)

+ ) \(\frac{X}{-3}=72=>X=-3\cdot72=-216\)

+ ) \(\frac{Y}{-4}=72=>X=-4\cdot72=-288\)

+ )\(\frac{Z}{5}=72=>Z=5\cdot72=360\)

Vậy X = - 216 

      Y = - 288

       Z = 360

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

5 tháng 7 2017

- Vì \(\frac{x}{5}=\frac{y}{3}\)=) \(3x=5y\)=) \(x=\frac{5y}{3}\)
=) \(x^2-y^2=4\)=) \(\left(\frac{5y}{3}\right)^2-y^2=4\)
=) \(\frac{25y^2}{9}-y^2=4\)=) \(\frac{25y^2}{9}-\frac{9y^2}{9}=\frac{36}{9}\)
=) \(25y^2-9y^2=36\)=) \(16y^2=36\)=) \(y^2=\frac{36}{16}=\frac{9}{4}\frac{3^2}{2^2}\)=) \(y=\frac{3}{2}\)
=) \(x=\frac{5.\frac{3}{2}}{3}=\frac{\frac{15}{2}}{3}=\frac{5}{2}\)

5 tháng 7 2017

a) Đặt x/5 = y/3 = k => x = 5k ; y = 3k

Ta có: x2 - y2 = 4

=> (5k)2 - (3k)2 = 4

=> 25k2 - 9k2 = 4

=> 16k2 = 4

=> k2 = 1/4

=> k = ±1/2

Với k = 1/2 thì x = 5/2, y = 3/2

Với k = -1/2 thì x = -5/2, y = -3/2

b) Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+z+x+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=> x + y + z = 1/2 ; x/y+z+1 = 1/2 ; y/z+x+1 = 1/2 ; z/x+y-2 = 1/2

=> \(\hept{\begin{cases}y+z+1=2x\\z+x+1=2y\\x+y-2=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

12 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tĩ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

Suy ra

x = (-2) . 9 = -18

y = (-2) . 12 = -24

z = (-2) . 15 = -30

 

12 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Suy ra 

x = 2 . 10 = 20

y = 2 . 6 = 12

z = 2 . 21 = 42

 

16 tháng 7 2016

2). Ta có: x/2=y/3 => x/8 = y/12

                y/4=z/5 => y/12 = z/15

=> x/2=y/12=z/15 và x+y-z=10

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10

=> x=2.(-10)=-20

     y=12.(-10)=-120

     z=15.(-10)=-150

Vậy x=-20; y=-120;z=-150

3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k

=> x=2k

     y=5k

Ta có xy = 10

       2k.5k =10

       10. k2=10

       k2      = 10 :10=1

=> k =1; k=-1

+) k = 1

=> x=2.1=2

     y=5.1=5

+) k = -1

=> x= 2.(-1) =-2

     y=5.(-1) = -5

Vậy x=2;y=5 hoặc x=-2;y=-5

16 tháng 7 2016

Câu 2:

Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)

           \(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)

    Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau ta có:

    \(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Vậy x=16;y=24;z=30

13 tháng 10 2016

a) Ta có: x/2 = y/3 => x/8 = y/12 (1)

y/4 = z/5 => y/12 = z/15 (2)

Từ (1) và (2) => x/8 = y/12 = z/15

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2

x/8 = 2 => x = 2 . 8 = 16

y/12 = 2 => y = 2 . 12 = 24

z/15 = 2 => z = 2 . 15 = 30

Vậy x = 16; y = 24 và z = 30

b) Ta có: x/2 = y/3 => x/10 = y/15 (1)

y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)

Từ (1) và (2) => x/10 = y/15 = z/12

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7

x/10 = -7 => x = -7 . 10 = -70

y/15 = -7 => y = -7 . 15 = -105

z/12 = -7 => z = -7 . 12 = -84

Vậy x = -70; y = -105 và z = -84

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5

x/2 = 5 => x = 5 . 2 = 10

y/3 = 5 => y = 5 . 3 = 15

z/4 = 5 => z = 5 . 4 = 20

Vậy x = 10; y = 15 và z = 20.

9 tháng 12 2016

a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)

=> x = 4.3 = 12

y = 4.4 = 16

b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

=> x = (-1).2 = -2

y = (-1)(-5) = 5

c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)

=> x = 8

y =12

z = 15