Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2\cdot(2x+3)-(4x+5)}{2\cdot(5x+2)-(10x+2)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)
Suy ra :
\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow1\cdot(5x+2)=2\cdot(2x+3)\)
\(5x+2=4x+6\)
\(5x-4x=6-2\)
\(x=4\)
\(b)\)Ta có : \(\frac{4}{x-3}=\frac{8}{y-6}=\frac{20}{z-15}\)
\(\Rightarrow\frac{x-3}{4}=\frac{y-6}{8}=\frac{z-15}{20}\)
\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{6}{8}=\frac{z}{20}-\frac{15}{20}\)
\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{3}{4}=\frac{z}{20}-\frac{3}{4}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{8}=\frac{z}{20}\)
Đặt : \(\frac{x}{4}=\frac{y}{8}=\frac{z}{20}=k\Rightarrow x=4k;y=8k;z=20k\)
Thay vào đề , ta có : xyz = 640
\(\Rightarrow4k\cdot8k\cdot20k=640\)
\(\Rightarrow640k^3=640\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Rightarrow x=4;y=8;z=20\)
Vậy
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}=K\)
\(\Rightarrow\hept{\begin{cases}x=4k\\y=5k\\z=6k\end{cases}}\)
\(\Rightarrow x^2-2y^2+z^2\)
\(=\left(4k\right)^2-2.\left(5k\right)^2+\left(6k\right)^2\)
\(=4^2.k^2-2.5^2.k^2+6^2.k^2\)
\(=k^2.\left(4^2-2.5^2+6^2\right)\)
\(=k^2.102\)
=> Thiếu Đề
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\) => \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Vậy ...
a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ
\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
(x+20)100 \(\ge0\forall x\)
|y+4| \(\ge0\forall y\)
Mà \(\left(x+20\right)^{100}+\left|y+4\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+20=0\\y+4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-20\\y=-4\end{cases}}}\)
a/
\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)
\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)
+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z
+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z
b/
\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)
=> m=y
+
cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha
1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
\(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
=> x = 75.4 : 15 = 20 ;
y = 60.4 : 15 = 16 ;
z = 45.4 : 15 = 12
Vậy x = 20 ; y = 16 ; z = 12
2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
Nếu x + y + z + t = 0
=> x + y = - (z + t)
=> y + z = - (t + x)
=> z + t = - (x + y)
=> t + x = - (z + y)
Khi đó :
P = \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
=> P = 4
Nếu x + y + z + t khác 0
=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)
=> y + z + t = z + t + x = t + x + y = x + y + z
=> x =y = z = t
Khi đó : P = 1 + 1 + 1 + 1 = 4
Vậy nếu x + y + z + t = 0 thì P = - 4
nếu x + y + z + t khác 0 thì P = 4
Ta có: 4x = 7y
<=> \(\dfrac{4}{y}=\dfrac{7}{x}\)
<=> \(\dfrac{16}{y^2}=\dfrac{49}{x^2}\)
=> \(\dfrac{16+49}{x^2+y^2}=\dfrac{65}{260}=\dfrac{1}{4}\)
=> \(\left\{{}\begin{matrix}x=28\\y=16\end{matrix}\right.\)
Đoạn biến đổi từ \(\dfrac{16}{y^2}=\dfrac{49}{x^2}\) sang \(\dfrac{16+49}{x^2+y^2}\) bạn nên xài dấu = thì hợp lý hơn, vì như vậy bạn mới có \(\dfrac{16}{y^2}=\dfrac{49}{x^2}=\dfrac{1}{4}\) để tìm ra x, y