Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Ta có : xy.yz.zx=3/5.4/5.3/4
=) x^2.y^2.z^2=9/25
(=) (x.y.z)^2 =9/25
mà (x.y.z)^2 =(3/5)^2
(=) x.y.z =3/5
*Ta có xy=3/5
=) xyz =3/5
=)3/5.z =3/5
=) z =3/5:3/5
(=) z =1
*Ta có: yz=4/5
=) xyz =3/5
=) x.4/5=3/5
=) x =3/5:4/5
=) x = 3/4
*Ta có: zx=3/4
=) xyz =3/5
(=) xzy =3/5
=)3/4.y=3/5
=) y =3/5:3/4
=) y =4/5
Vậy x=3/4, y=4/5, z=1
a, Đặt \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=7k\\z=5k\end{matrix}\right.\)
Mà \(yz-xy-z^2=-72\)
\(\Rightarrow35k^2-28k^2-25k^2=-72\\ \Rightarrow k^2\left(35-28-25\right)=-72\\ k^2\cdot\left(-18\right)=-72\\ \Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
Với k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=7\cdot2=14\\z=5\cdot2=10\end{matrix}\right.\)
Với k = -2
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot\left(-2\right)=-8\\y=7\cdot\left(-2\right)=-14\\z=5\cdot\left(-2\right)=-10\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\in\left\{\left(8;14;10\right);\left(-8;-14;-10\right)\right\}\)
b, Đặt \(\frac{x}{2}=\frac{y}{7}=\frac{z}{8}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=7k\\z=8k\end{matrix}\right.\)
Mà \(2x^2+xy-xz=54\)
\(\Rightarrow8k^2+14k^2-16k^2=54\\ \Rightarrow k^2\left(8+14-16\right)=54\\ \Rightarrow k^2\cdot6=54\\ \Rightarrow k^2=9\\ \Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)
Với k = 3
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=7\cdot3=21\\z=8\cdot3=24\end{matrix}\right.\)
Với k = -3
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-3\right)=-6\\y=7\cdot\left(-3\right)=-21\\z=8\cdot\left(-3\right)=-24\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\in\left\{\left(6;21;24\right);\left(-6;-21;-24\right)\right\}\)
c, Đặt \(\frac{x+3}{5}=\frac{y-4}{3}=\frac{z-5}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k-3\\y=3k+4\\z=2k+5\end{matrix}\right.\)
Mà \(2x-3y-z=-26\)
\(\Rightarrow2\left(5k-3\right)-3\left(3k+4\right)-\left(2k+5\right)=-26\\ \Rightarrow10k-6-9k-12-2k-5=-26\\ \Rightarrow-k=-3\\ \Rightarrow k=3\\ \Rightarrow\left\{{}\begin{matrix}x=5\cdot3-3=12\\y=3\cdot3+4=13\\z=2\cdot3+5=11\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(12;13;11\right)\)
a) Ta có:
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)
Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)
\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)
=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\) và \(x-y-z=1.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)
Chúc bạn học tốt!
Ta có: \(xy.yz.zx=x^2.y^2.z^2=\frac{3}{5}.\frac{4}{5}.\frac{3}{4}=\frac{9}{25}\)
Do đó: \(xyz=\sqrt{\frac{9}{25}}=\frac{3}{5}=xy\)(1) .Từ (1) ta có: xyz = xy suy ra z = 1 (áp dụng tính chất số nào nhân với 1 cũng bằng chính nó) (2)
Thế z = 1 vào: \(xy=\frac{3}{5};yz=\frac{4}{5}\). Ta có: \(xy=\frac{3}{5};y=\frac{4}{5}\). Được \(y=\frac{4}{5}\) (3)
Thế \(y=\frac{4}{5}\)vào \(xy=\frac{3}{5}\). Ta có: \(\frac{4}{5}x=\frac{3}{5}\Leftrightarrow x=\frac{\left(\frac{3}{5}\right)}{\left(\frac{4}{5}\right)}=\frac{3}{4}\)(4)
Từ (2) ; (3) và (4) ta có: \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{4}{5}\\z=1\end{cases}}\)
Theo đầu bài ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)
Từ đó suy ra:
\(xy+yz+xz=104\)
\(\Rightarrow2k\cdot3k+3k\cdot4k+2k\cdot4k=104\)
\(\Rightarrow6k^2+12k^2+8k^2=104\)
\(\Rightarrow26k^2=104\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)
Áp dụng tính chất dãy tỷ số bằng nhau ta có :
\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\)= \(\frac{xy+1+yz+2+xz+3}{9+15+27}\) = \(\frac{xy+yz+xz+6}{51}\) (1)
Thay xy +yz + xz = 11 vào (1) ta được :
\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\) = \(\frac{11+6}{51}\) = \(\frac{1}{3}\) Do đó : xy = \(\frac{1}{3}\). 9 - 1 = 2 => x = \(\frac{2}{y}\) (2) yz = 3 xz = 6 => x = \(\frac{6}{z}\) (3) Từ (2),(3) => x = \(\frac{2}{y}\) = \(\frac{6}{z}\) => x2 = \(\frac{2}{y}\) . \(\frac{6}{z}\) = \(\frac{12}{yz}\) = \(\frac{12}{3}\) = 4 => x = \(\pm\) 2 *) Với x = 2 => y = 2:2 = 1 và z = 6 :2 = 3 *) Với x = -2 => y = 2 : (-2) = -1 và z = 6 : (-2) = -3 Vậy ( x;y;z ) bằng các cặp số sau : ( 2;1;3) hoặc (-2;-1;-3)
Ta có : \(xy.yz.xz=\frac{3}{5}\cdot\frac{4}{5}\cdot\frac{3}{4}\)
\(\Leftrightarrow\left(xyz\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow xyz=\frac{3}{5}\)
\(\Rightarrow z=xyz:xy=\frac{3}{5}:\frac{3}{5}=1\)
\(\Rightarrow y=\frac{4}{5}\)
\(\Rightarrow x=\frac{3}{5}:\frac{4}{5}=\frac{3}{5}\cdot\frac{5}{4}=\frac{3}{4}\)
Vậy \(x=\frac{3}{4};y=\frac{4}{5};z=1\)