Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình k chép lại đề nha!
Ap dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-4}{4}=\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{2x+3y-z-4}{2+3-4}=46\)
Suy ra; x-1/2 => x-1=92 => x=93
y-2/3 => y-2=138 => y=140
z-4/4=46 => z-4= 184 => z=188
Vậy x=93
y=140
z=188
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-4}{4}\)
\(\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-4}{4}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{2x-2+3y-6-z+4}{4+9-4}=\dfrac{\left(2x+3y-z\right)-2-6+4}{9}=\dfrac{54}{9}=6\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=6\Rightarrow x-1=12\Rightarrow x=13\\\dfrac{y-2}{3}=6\Rightarrow y-2=18\Rightarrow y=20\\\dfrac{z-4}{4}=6\Rightarrow z-4=24\Rightarrow z=28\end{matrix}\right.\)
b) áp dụng giống.
\(2\) )
\(B=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{4}\right)\)
\(B=\dfrac{2y}{x}.\dfrac{x+z}{z}.\dfrac{4+z}{4}\)
\(B=\dfrac{2y\left(x+z\right)\left(4+z\right)}{4xz}\)
\(B=\dfrac{\left(2xy+2yz\right)\left(4+z\right)}{4xz}\)
\(B=\dfrac{8xy+2xyz+8yz+2yz^2}{4xz}\)
Kêu người ta giúp mà ói vào mặt người ta vậy à?
1. đề bạn ghi rõ lại giúp mình đc ko r mình giải lại cho
2. Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{y^2}{5^2}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=12\)
\(\dfrac{y}{5}=4\Rightarrow y=20\)
Vậy x=12 và y=20
Tìm x,y,z biết:
\(x+y=\dfrac{1}{2}\)
\(y+z=\dfrac{1}{3}\)
\(z+x=\dfrac{1}{4}\)
mong các bn giúp mik!
Ta có: \(\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\left(1\right)\\y+z=\dfrac{1}{3}\left(2\right)\\z+x=\dfrac{1}{4}\left(3\right)\end{matrix}\right.\)
Cộng (1); (2); (3) vế theo vế ta được:
\(2\left(x+y+z\right)=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)
=> \(2\left(x+y+z\right)=\dfrac{13}{12}\)
=> \(x+y+z=\dfrac{13}{24}\)
+) Mà \(x+y=\dfrac{1}{2}\) => \(z=\dfrac{13}{24}-\dfrac{1}{2}\) = \(\dfrac{1}{24}\)
+) Mà y + z = \(\dfrac{1}{3}\) => \(\left\{{}\begin{matrix}y=\dfrac{1}{3}-\dfrac{1}{24}\\x=\dfrac{13}{24}-\dfrac{1}{3}\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=\dfrac{7}{24}\\x=\dfrac{5}{24}\end{matrix}\right.\) (TM)
Vậy \(x=\dfrac{5}{24};y=\dfrac{7}{24};z=\dfrac{1}{24}\)
P/s: Bài này có nhiều cách giải lắm!
x + y=1/2
y + z=1/3
z + x=1/4
=> x + y + y + z + z + x = 1/2 + 1/3 + 1/4 = 13/12
hay: 2(x + y + z ) = 13/12
x + y + z = 13/12 :2
x + y + z = 13/24
x = 13/24 - 1/3 = 5/24
y = 13/24 - 1/4 = 7/24
z = 13/24 - 1/2 = 1/24
Vậy ...
a) Ta có :
\(x+y=29\)
\(\dfrac{2x}{5}=\dfrac{3y}{7}\)
\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{42}\)
\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{14}=\dfrac{x+y}{15+14}=\dfrac{29}{29}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{15}=1\Leftrightarrow x=15\\\dfrac{y}{14}=1\Leftrightarrow x=14\end{matrix}\right.\)
Vậy .......
Câu a .Theo đề bài ta có :
\(\dfrac{2x}{5}=\dfrac{3y}{7}\) \(\Rightarrow\) \(\dfrac{2x}{30}=\dfrac{3y}{42}\) \(\Rightarrow\) \(\dfrac{x}{15}=\dfrac{y}{14}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{14}=\dfrac{x+y}{15+14}=\dfrac{29}{29}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{15}=1\Rightarrow x=15\\\dfrac{y}{14}=1\Rightarrow y=14\end{matrix}\right.\)
Câu b : Theo đề bài ta có :
\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}=\dfrac{-x}{-5}=\dfrac{y}{1}=\dfrac{2z}{-4}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{-x}{-5}=\dfrac{y}{1}=\dfrac{2z}{-4}=\dfrac{-x-y+2z}{-5-1-4}=\dfrac{160}{-10}=-16\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-x}{-5}=-16\Rightarrow x=-80\\\dfrac{y}{1}=-16\Rightarrow y=-16\\\dfrac{2z}{-4}=-16\Rightarrow z=32\end{matrix}\right.\)
Câu c : Tương tự như câu a
Câu d : Theo đề bài ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}\) và \(x^2-y^2=-4\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x^2-y^2}{3^2-5^2}=\dfrac{-4}{-16}=\dfrac{1}{4}\)
\(\left[{}\begin{matrix}\dfrac{x}{3}=\dfrac{1}{4}\Rightarrow x=\dfrac{3}{4}\\\dfrac{y}{5}=\dfrac{1}{4}\Rightarrow y=\dfrac{5}{4}\end{matrix}\right.\)
Theo đề bài, ta có:
\(\dfrac{3x}{4}=\dfrac{y}{2}=\dfrac{3z}{5}\) và x - z = 15
\(\Rightarrow\dfrac{3x}{4}=\dfrac{y}{2}\Rightarrow6x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\) (1)
\(\Rightarrow\dfrac{y}{2}=\dfrac{3z}{5}\Rightarrow5y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\) (2)
(1)(2) \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{x-z}{4-5}=-\dfrac{15}{1}=-15\)
\(\Rightarrow x=-60;y=-90;z=-75\)
\(\Rightarrow x+y+z=-225\)
1
Ta có:
(1) 1+2y/18 = 1+4y/24
=> 24 + 48y = 18 + 72y
<=> y=1/4
(2) 1+4y/24=1+6y/6x
Thay y=1/4 vào (2) ta tìm đc x=5 (thỏa)
2
ùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0)
* trước tiên ta xét trường hợp x+y+z = 0 có
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0
* xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2 và:
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
a/ \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\)
\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy ..............
b, \(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{13}{39}< \dfrac{13}{38}\)
\(\Leftrightarrow\dfrac{13}{38}>\dfrac{-12}{-37}\)
a)\(\text{|}x+\dfrac{3}{4}\text{|}-\dfrac{1}{3}=0\)
=>\(\text{|}x+\dfrac{3}{4}\text{|}=\dfrac{1}{3}\)
=>\(x+\dfrac{3}{4}=-\dfrac{1}{3}\)hoặc\(x+\dfrac{3}{4}=\dfrac{1}{3}\)
=>\(x=-\dfrac{13}{12}\)hoặc\(x=-\dfrac{5}{12}\)
Vậy...
b)\(\dfrac{13}{38}\) và \(\dfrac{-12}{-37}\)
Ta có:\(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{1}{3}=\dfrac{13}{39}< \dfrac{13}{38}\)
=>\(\dfrac{13}{38}>\dfrac{-12}{-37}\)
phần a sai đề ak?
phải là \(\frac{z+y+1}{y} \) chứ
\(\frac{y+z+1}{x} \)