\(\left(x^2+y^2\right)\left(y^2+1\right)=4xy^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

pt tương đương x^2y^2+x^2+y^2+y^2-4xy^2=0 

x^2y^2-2xy^2+y^2+x^2-2xy^2+y^4=0

(xy-y)^2+(x-y^2)^2=0 

suy ra xy-y=0 và x-y^2=0 

y(x-1)=0 và x=y^2 

TH1 y=0 suy ra x=0

TH2 x-1=0 hay x=1 suy ra y=1 hoặc y=-1 

các cặp (x,y) thỏa mãn đề bài là (0,0);(1,1);(1;-1) 

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

30 tháng 7 2017

Bài này cũng không khó lắm:

Đặt \(x-1=a\) và \(y+1=b\). Khi đó \(a+b=x+y\). Theo đề bài ta có:

\(\left(a+b\right)^2=ab\Leftrightarrow a^2+ab+b^2=0\Leftrightarrow\left(a+\frac{b}{a}\right)^2+\frac{3b^2}{4}=0\Leftrightarrow a=b=0\)

Vậy \(x=1;y=-1\)

30 tháng 7 2017

sorry, viết nhầm chỗ b/a nhá phải là b/4

25 tháng 3 2017

Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)

\(\Leftrightarrow F=E\)

Từ đó ta có:

\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)

\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)

\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)

\(\Rightarrow F\ge\frac{1}{4}\)

Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 3 2017

Bạn ơi, cho mình hỏi này

Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\)  và sao có  \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)  

Giải đáp tận tình hộ mình nhé.

31 tháng 3 2019

Bài này chỉ vận dụng phân tích đa thức thành nhân tử thôi

Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=6xyz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=6xyz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^3+z^3=3xyz\left(x+y+z+1\right)\)

Do đó: \(x^3+y^3+z^3+1=3xyz\left(x+y+z+1\right)+1⋮x+y+z+1\)

Suy ra: \(1⋮x+y+z+1\)

 \(\Rightarrow x+y+z+1=1\)( do \(x,y,z\ge0\Rightarrow x+y+z+1\ge1\))

\(\Leftrightarrow x=y=z=0\)

Vậy \(x=y=z=0\)

26 tháng 10 2018

Xin câu a :3

a) (x + y + 1)2 = 3(x2 + y2) + 1

<=> x2 + y2 + 1 + 2xy + 2x + 2y = 3x2 + 3y2 + 1

<=> 2x2 + 2y2 - 2xy - 2x - 2y = 0

<=> (x2 - 2xy + y2) + (x2 - 2x + 1) + (y2 - 2y + 1) = 2

<=> (x - y)2 + (x - 1)2 + (y - 1)2 = 2

Vì 2 = 02 + 12 + 12 nên ta có các TH sau:

TH1:

\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=2\\x=y=0\end{matrix}\right.\)

TH2:

\(\left\{{}\begin{matrix}\left(x-y\right)^2=1\\\left(x-1\right)^2=0\\\left(y-1\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1;y=0\\x=1;y=2\end{matrix}\right.\)

TH3:

\(\left\{{}\begin{matrix}\left(x-y\right)^2=1\\\left(x-1\right)^2=1\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2;y=1\\x=0;y=1\end{matrix}\right.\)

Vậy ...

26 tháng 10 2018

a) ta có : \(\left(x+y+1\right)^2=3\left(x^2+y^2\right)+1\)

\(\Leftrightarrow x^2+y^2+1+2xy+2y+2x=3x^2+3y^2+1\)

\(\Leftrightarrow-\left(x-1\right)^2-\left(y-1\right)^2=\left(x-y\right)^2-2\le0\)

\(\Leftrightarrow-\sqrt{2}\le x-y\le\sqrt{2}\) --> ...

b) \(\left(2x-y-2\right)^2=7\left(x-2y-y^2-1\right)\)

\(\Leftrightarrow4x^2+y^2+4-4xy+4y-4x=7x-14y-7y^2-7\)

\(\Leftrightarrow2x^2-4xy+2y^2+2x^2-11x+\dfrac{121}{16}+6y^2+18y+\dfrac{9}{4}=\dfrac{-19}{16}\left(vl\right)\)

câu c tương tự .

11 tháng 11 2018

\(P=2x\left(x+y\right)=2x^2+2xy\) Với x khác y, x khác -y

\(3x^2+y^2+2x-2y=1\)\(\Leftrightarrow2x^2+2xy+y^2+x^2+1-2xy+2x-2y=2\)

\(\Leftrightarrow P+\left(x-y+1\right)^2=2\)\(\Leftrightarrow P=2-\left(x-y+1\right)^2\le2\)vì \(\left(x-y+1\right)^2\ge0\)với mọi x, y là số thực

Vì P nguyên dương => P=1 

Khi đó \(\left(x-y+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-y+1=-1\\x-y+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=-2\\x-y=0\left(loai\right)\end{cases}}\)

vì x khác y