K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NQ
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KO
1
30 tháng 12 2019
Vì \(x^2+x+2019\)là SCP
\(\Rightarrow x^2+x+2019=y^2\left(y\in Z\right)\)
\(\Leftrightarrow x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2019=y^2\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{8075}{4}=y^2\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-y^2=\frac{-8075}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}-y\right)\left(x+\frac{1}{2}+y\right)=\frac{-8075}{4}\)
\(\Leftrightarrow\left(-2x+2y-1\right)\left(2x+2y+1\right)=8075\)
ta có bảng sau:
-2x+2y-1 | 5 | 1615 | 25 | 323 | -5 | -1615 | -25 | -323 |
2x+2y+1 | 1615 | 5 | 323 | 25 | -1616 | -5 | -323 | -25 |
x | 402 | -403 | 74 | -75 | -1613/4 | 402 | -75 | 74 |
y | 405 | 405 | 87 | 87 | -1621/4 | -405 | -87 | -87 |
chọn | chọn | chọn | chọn | loại | chọn | chọn | chọn |
Vậy \(x\in\left\{402;-403;74;-75\right\}\)
BM
1
PT
0
KH
3
VD
1
Điều kiện \(x^2+7x\ge0\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\le-7\end{cases}}\)
Với \(x\ge0\)ta có
\(x^2\le x^2+7x< x^2+8x+16\)
\(\Leftrightarrow x^2\le x^2+7x< \left(x+4\right)^2\)
\(\Rightarrow x^2+7x=\left(\left(x^2\right);\left(x+1\right)^2;\left(x+2\right)^2;\left(x+3\right)^2\right)\)
Thế vô giải được: x = (0; 9)
Phần x<= -7 bạn làm tương tự
nghiem tam thuong x=0; x khac 0
x^2+7x=k^2
delta(x)=49+4k^2=t^2
t^2-(2k)^2=49
(t-2k)(t+2k)=49=1.49=7.7=(-1).(-49)=(-7).(-7)
giai pt nghiem ngyen ra duoc
t=+-25=>k=+-12; t=+-7=>k=0
x=(-7+-t)/2
thay gia tri t vao duoc
x=(9,-16,0,-7)