K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 1

a.

Nếu p và q cùng lẻ \(\Rightarrow pq+13\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)

Nếu p;q cùng chẵn \(\Rightarrow5p+q\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)

\(\Rightarrow\) p và q phải có 1 số chẵn, 1 số lẻ

TH1: p chẵn và q lẻ \(\Rightarrow p=2\)

Khi đó \(2q+13\) và \(q+10\) đều là số nguyên tố

- Nếu \(q=3\Rightarrow2q+13=2.3+13=19\) là SNT và \(q+10=13\) là SNT (thỏa mãn)

- Với \(q>3\Rightarrow q\) không chia hết cho 3 \(\Rightarrow q=3k+1\) hoặc \(q=3k+2\)

Với \(q=3k+1\Rightarrow2q+13=2\left(3k+1\right)=3\left(2k+5\right)⋮3\) là hợp sô (loại)

Với \(q=3k+2\Rightarrow q+10=3k+12=3\left(k+4\right)⋮3\) là hợp số (loại)

TH2: p lẻ và q chẵn \(\Rightarrow q=2\)

Khi đó \(2p+13\) và \(5p+2\) đều là số nguyên tố

- Với \(p=3\Rightarrow2p+13=19\) là SNT và \(5p+2=17\) là SNT (thỏa mãn)

- Với \(p>3\Rightarrow p\) ko chia hết cho 3 \(\Rightarrow p=3k+1\) hoặc \(p=3k+2\)

Với \(p=3k+1\Rightarrow2p+13=3\left(2p+5\right)⋮3\) là hợp số (loại)

Với \(p=3k+2\Rightarrow5p+2=3\left(5k+4\right)⋮3\) là hợp số (loại)

Vậy \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\) thỏa mãn yêu cầu

NV
9 tháng 1

b.

x là số tự nhiên \(\Rightarrow x^2+4x+32>x+4\)

Do p là số nguyên tố mà \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+4x+32=p^a\\x+4=p^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a>b\\a+b=n\end{matrix}\right.\)

\(\Rightarrow\dfrac{x^2+4x+32}{x+4}=\dfrac{p^a}{p^b}\)

\(\Rightarrow x+\dfrac{32}{x+4}=p^{a-b}\)

Do \(p^{a-b}\) là số nguyên dương khi \(a>b\) và x là số nguyên

\(\Rightarrow\dfrac{32}{x+4}\) là số nguyên

\(\Rightarrow x+4=Ư\left(32\right)\)

Mà \(x+4\ge4\Rightarrow x+4=\left\{4;8;16;32\right\}\)

\(\Rightarrow x=\left\{0;4;12;28\right\}\)

Thay vào \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)

- Với \(x=0\Rightarrow128=p^n\Rightarrow2^7=p^n\Rightarrow p=2;n=7\)

- Với \(x=4\Rightarrow512=p^n\Rightarrow2^9=p^n\Rightarrow p=2;n=9\)

- Với \(x=12\Rightarrow3584=p^n\) (loại do 3584 không phải lũy thừa của 1 SNT)

- Với \(x=28\Rightarrow29696=p^n\) (loại do 29696 không phải lũy thừa của 1 SNT)

Vậy \(\left(x;p;n\right)=\left(0;2;7\right);\left(4;2;9\right)\)

9 tháng 1

loading...

Bài 13*: Một nhà máy có khoảng 1700 đến 2000 công nhân. Biết rằng khi xếp hàng 18 thì dư 8 người, xếp hàng 20 thì dư 10 người, xếp hàng 25 thì dư 15 người. Tính số công nhân của nhà máy.Bài 14*: Một đơn vị bộ đội khi xếp hàng 20 thì thiếu 5 người, xếp hàng 25 thì thiếu 20 người, xếp hàng 30 thì thiếu 15 người; nhưng xếp hàng 41 thì vừa đủ. Tính số người của đơn vị đó biết đơn...
Đọc tiếp

Bài 13*: Một nhà máy có khoảng 1700 đến 2000 công nhân. Biết rằng khi xếp hàng 18 thì dư 8 người, xếp hàng 20 thì dư 10 người, xếp hàng 25 thì dư 15 người. Tính số công nhân của nhà máy.

Bài 14*: Một đơn vị bộ đội khi xếp hàng 20 thì thiếu 5 người, xếp hàng 25 thì thiếu 20 người, xếp hàng 30 thì thiếu 15 người; nhưng xếp hàng 41 thì vừa đủ. Tính số người của đơn vị đó biết đơn vị này có không quá 1000 người.

Bài 15: Tìm các cặp số tự nhiên x,y, biết:

3) * \(2y\times\left(x+1\right)-x-7=0\)                             4) * \(xy-2x+y=15\)

Bài 16*: Tìm các số tự nhiên a,b (a<b), biết:

1) a + b = 336 và ƯCLN(a,b) = 24.      2) ƯCLN(a,b) = 6 và BCNN(a,b) = 36.      3) BCNN(a,b) = 150 và a.b = 3750.

4) a.b = 180 và BCNN(a,b)=20.ƯCLN(a,b).     5) a + b = 40 và BCNN(a,b) = 7.ƯCLN(a,b).      6) ƯCLN(a,b) + BCNN(a,b) = 21.

Bài 17*: So sánh các lũy thừa sau: a) 828 và 1521. b) 591 và 1159. c) 3319 và 1523.

Bài 18*: Chứng minh rằng:

1) Hai số tự nhiên liên tiếp thì nguyên tố cùng nhau.

2) \(\left(5n+1\right)\) và \(\left(6n+1\right)\) là hai số nguyên tố cùng nhau \(\left(n\in N\right)\)

3) BCNN\(\left(6n+1;n\right)=\left(6n2+n\right)\) với \(\left(n\in N\right)\)

4) \(S=31+32+33+...+3100⋮120\)

5) \(S=102015+8⋮18\)

6) Nếu \(\left(7a+2b;31a=9b\right)⋮2015\Rightarrow a,b⋮2015\left(a,b\in N\right)\)

7) Nếu p và p + 4 là hai số nguyên tố (p>3) thì p + 8 sẽ phải là hợp số.

8) Nếu a và b là hai số nguyên tố cùng nhau thì hai số \(13a+4b\)\(15a+7b\)hoặc cũng nguyên tố cùng nhau hoặc \(⋮31\)

Bài 19*:

1) Tìm ƯCLN\(\left(2n+1;9n+5\right)\)với\(n\in N\)

2) Tìm số nguyên tố p sao cho: \(p+4;p+10;p+14\)đều là số nguyên tố.

3) Tìm ba số lẻ liên tiếp đều là số nguyên tố.

4) Tìm số tự nhiên a nhỏ nhất thỏa mãn:\(a\div4\left(dư3\right),a\div17\left(dư9\right),a\div19\left(dư13\right)\)

5) Hãy tính tổng các ước số của \(A=217\times5\)

6) \(S=1+5+52+53+...+520\)Tìm số tự nhiên n thỏa mãn: \(4S=5n\)

7) Tìm số tự nhiên n, biết \(p=\left(n-2\right)\times\left(n2+n-5\right)\)là số nguyên tố.

8) Tìm số tự nhiên n, biết \(1+3+5+..+\left(2n=1\right)=169\)

9) Tìm số nguyên tố bé nhất trong ba số nguyên tố có tổng bằng 132.

10) Tìm hai số tự nhiên nhỏ nhất có đúng 18 ước số.

11) Tìm ba số tự nhiên liên tiếp có tích bằng 2184.

Bài 20*: 

a) Cho p và 2p + 1 là hai số nguyên tố (p>3). Hỏi 4p + 1 là số nguyên tố hay hợp số?

b) Một số chia cho 21 dư 2 và chia 12 dư 5. Hỏi số đó chia cho 84 thì dư bao nhiêu?

Nhớ nhanh lên nhé, đây là các bài trong đề cương của mình, tuần sau mình phải thi học kì 1 rồi!!! Nhanh lên!!! Mình chờ đấy!!!

3
5 tháng 12 2019

mình làm ơn đấy, trả lời giúp mình đi!!!!!!

help me please, I will repay you!!!!!!

8 tháng 12 2019

you just help me, I will repay you everywhere!!!!!!

29 tháng 10 2016

Gọi d là ước chung cần tìm của 9x+4 và 2x-1

Do đó : 9x+4\(⋮\)d\(\Rightarrow\)2(9x+4)\(⋮\)d

Lại có: 2x-1\(⋮\)d\(\Rightarrow\)9(2x-1)\(⋮\)d

\(\Rightarrow\)9(2x-1)-2(9x+4)\(⋮\)d

\(\Rightarrow\)18x-9-18x+8\(⋮\)d

\(\Rightarrow\)17\(⋮\)d

Vậy d=17

Vậy UC(9x+4;2x-1)={17}

 Bài 3. 1) Tim hai số tự nhiên a và b biết rằng a + b = 810 và ước chung lớn nhất của chúng bằng 45. 2) Tìm hai số nguyên tố p và q biết rằng p>q sao cho p+q và p −g đều là các số nguyên tố.            Bài 4. 1) Cho hai số tự nhiên a và b thỏa mãn số m=(16a+17b)(17a+16b) là một bội số của 11. Chứng minh rằng số m cũng là một bội số của 121. 2) Tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 ...
Đọc tiếp

 Bài 3. 1) Tim hai số tự nhiên a và b biết rằng a + b = 810 và ước chung lớn nhất của chúng bằng 45. 2) Tìm hai số nguyên tố p và q biết rằng p>q sao cho p+q và p −g đều là các số nguyên tố.            Bài 4. 1) Cho hai số tự nhiên a và b thỏa mãn số m=(16a+17b)(17a+16b) là một bội số của 11. Chứng minh rằng số m cũng là một bội số của 121. 2) Tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5                                                                 Bài 5.  Cho hình vuông ABCD. Phần diện tích chung của ABCD và tam giác EFG được tô đen. Diện tích phần tô đen bằng 4/5 diện tích tam giác EFG và bằng 12 diện tích của hình vuông ABCD. Nếu diện tích tam giác EFG bằng 40cm, tính độ dài cạnh của hình vuông ABCD

0
27 tháng 12 2014

Thay hướng dẫn tiếp phần b nhé: 

Giả sử cả 3 số p;q;r đều không chia hết cho 3 thế thì p2;q2;r2 chia cho 3 chỉ dư 1 ( vì p;q;r nguyên tố)

Suy ra: p+ q+ rchia hết cho 3 mà p+ q+ r>3 suy ra p+ q+ rlà hợp số ( mâu thuẫn đề bài).

Vậy điều giả sử là sai suy ra trong 3 số tồn tại ít nhất một số chia hết cho 3

Không mất tính tổng quat giả sử p<q<r\(\Rightarrow\)p chia hết cho 3 mà p là số nguyên tố suy ra p = 3

Lại có: p;q;r là 3 số nguyên tố liên tiếp nên q = 5; r=7

Vậy (p;q;r) = (3;5;7) và các hoán vị 

28 tháng 12 2014

b, Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1 

Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( là hợp số, loại )

Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( loại )

Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ( 2 số còn lại chia 3 dư 1 ) loại vì không có số chính phương nào chia 3 dư 2

Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ( 2 số còn lại chia hết cho 3 ) chọn

Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3

mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3. 

Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 - 3 - 5 hoặc 3 - 5 - 7 

Với 3 số nguyên tố là 2 - 3 - 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ( là hợp số, loại )

Vậy 3 số nguyên tố cần tìm là 3 5 7 

Nguyễn Vân Huyền đã chọn câu trả lời này