K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 1 2024

a.

Nếu p và q cùng lẻ \(\Rightarrow pq+13\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)

Nếu p;q cùng chẵn \(\Rightarrow5p+q\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)

\(\Rightarrow\) p và q phải có 1 số chẵn, 1 số lẻ

TH1: p chẵn và q lẻ \(\Rightarrow p=2\)

Khi đó \(2q+13\) và \(q+10\) đều là số nguyên tố

- Nếu \(q=3\Rightarrow2q+13=2.3+13=19\) là SNT và \(q+10=13\) là SNT (thỏa mãn)

- Với \(q>3\Rightarrow q\) không chia hết cho 3 \(\Rightarrow q=3k+1\) hoặc \(q=3k+2\)

Với \(q=3k+1\Rightarrow2q+13=2\left(3k+1\right)=3\left(2k+5\right)⋮3\) là hợp sô (loại)

Với \(q=3k+2\Rightarrow q+10=3k+12=3\left(k+4\right)⋮3\) là hợp số (loại)

TH2: p lẻ và q chẵn \(\Rightarrow q=2\)

Khi đó \(2p+13\) và \(5p+2\) đều là số nguyên tố

- Với \(p=3\Rightarrow2p+13=19\) là SNT và \(5p+2=17\) là SNT (thỏa mãn)

- Với \(p>3\Rightarrow p\) ko chia hết cho 3 \(\Rightarrow p=3k+1\) hoặc \(p=3k+2\)

Với \(p=3k+1\Rightarrow2p+13=3\left(2p+5\right)⋮3\) là hợp số (loại)

Với \(p=3k+2\Rightarrow5p+2=3\left(5k+4\right)⋮3\) là hợp số (loại)

Vậy \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\) thỏa mãn yêu cầu

NV
9 tháng 1 2024

b.

x là số tự nhiên \(\Rightarrow x^2+4x+32>x+4\)

Do p là số nguyên tố mà \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+4x+32=p^a\\x+4=p^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a>b\\a+b=n\end{matrix}\right.\)

\(\Rightarrow\dfrac{x^2+4x+32}{x+4}=\dfrac{p^a}{p^b}\)

\(\Rightarrow x+\dfrac{32}{x+4}=p^{a-b}\)

Do \(p^{a-b}\) là số nguyên dương khi \(a>b\) và x là số nguyên

\(\Rightarrow\dfrac{32}{x+4}\) là số nguyên

\(\Rightarrow x+4=Ư\left(32\right)\)

Mà \(x+4\ge4\Rightarrow x+4=\left\{4;8;16;32\right\}\)

\(\Rightarrow x=\left\{0;4;12;28\right\}\)

Thay vào \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)

- Với \(x=0\Rightarrow128=p^n\Rightarrow2^7=p^n\Rightarrow p=2;n=7\)

- Với \(x=4\Rightarrow512=p^n\Rightarrow2^9=p^n\Rightarrow p=2;n=9\)

- Với \(x=12\Rightarrow3584=p^n\) (loại do 3584 không phải lũy thừa của 1 SNT)

- Với \(x=28\Rightarrow29696=p^n\) (loại do 29696 không phải lũy thừa của 1 SNT)

Vậy \(\left(x;p;n\right)=\left(0;2;7\right);\left(4;2;9\right)\)

9 tháng 1 2024

loading...

Cau 1 Có  số vừa là bội của 3 vừa là ước của 54.Câu 2:Viết số 43 dưới dạng tổng hai số nguyên tố a,b với a<b . Khi đó  b=Câu 3:Tập hợp các số tự nhiên x là bội của 13 và 26<=x<=104  có  phần tử.Câu 4:Tập hợp các số có hai chữ số là bội của 32 là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 5:Có tất cả bao nhiêu cặp số tự nhiên {x,y} thỏa mãn...
Đọc tiếp

Cau 1 Có  số vừa là bội của 3 vừa là ước của 54.

Câu 2:
Viết số 43 dưới dạng tổng hai số nguyên tố a,b với a<b . Khi đó  b=

Câu 3:
Tập hợp các số tự nhiên x là bội của 13 và 26<=x<=104  có  phần tử.

Câu 4:
Tập hợp các số có hai chữ số là bội của 32 là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 5:
Có tất cả bao nhiêu cặp số tự nhiên {x,y} thỏa mãn {2x+y}{y-3} ?
Trả lời: Có  cặp

Câu 6:
Tổng của tất cả các số nguyên tố  có 1 chữ số là 

Câu 7:
Tìm số nguyên tố p nhỏ nhất sao cho p+2 và p+4 cũng là số nguyên tố.
Trả lời: Số nguyên tố  

Câu 8:
Tìm số nguyên tố p nhỏ nhất sao cho p+10 và p+14 cũng là số nguyên tố.
Trả lời:Số nguyên tố  

Câu 9:
Có bao nhiêu số nguyên tố có dạng a1 ?
Trả lời:  số.

Câu 10:
Cho x,y là các số nguyên tố thỏa mãn x.x+45=y.y . Tổng x+y=

 

 

2
8 tháng 11 2016

Cau 1 Có  số vừa là bội của 3 vừa là ước của 54.

6

Câu 2:
Viết số 43 dưới dạng tổng hai số nguyên tố a,b với a<b . Khi đó  b=

41

Câu 3:
Tập hợp các số tự nhiên x là bội của 13 và 26<=x<=104  có  phần tử.

7

Câu 4:
Tập hợp các số có hai chữ số là bội của 32 là {32;64;96}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 5:
Có tất cả bao nhiêu cặp số tự nhiên {x,y} thỏa mãn {2x+y}{y-3} ?
Trả lời: Có 2 cặp

Câu 6:
Tổng của tất cả các số nguyên tố  có 1 chữ số là 17

Câu 7:
Tìm số nguyên tố p nhỏ nhất sao cho p+2 và p+4 cũng là số nguyên tố.
Trả lời: Số nguyên tố  1

Câu 8:
Tìm số nguyên tố p nhỏ nhất sao cho p+10 và p+14 cũng là số nguyên tố.
Trả lời:Số nguyên tố  3

Câu 9:
Có bao nhiêu số nguyên tố có dạng a1 ?
Trả lời: 5 số.

Câu 10:
Cho x,y là các số nguyên tố thỏa mãn x.x+45=y.y . Tổng x+y=9

19 tháng 11 2016

Tập hợp các số tự nhiên x sao cho 6/ (x+1) là { } (Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

12 tháng 2 2016

1/10000

2/-12

3/20

4/1

5/-14

6/19

7/16

mình chắc chắn đugs 100% luôn vì mình đã thi violimpic vòng này(vòng 14) rồi

hay là kết bạn đi bài nào ko biết thì hỏi mình mình giải cho

nhớ cho mình nhé

 

28 tháng 2 2016

1:10000

2:-12

3:20

4:2;3

5:-14

6:19

7:16

Câu 1:Kết quả của phép tính (-5) + (-6) + (-7) là ...........Câu 2:Với n là số tự nhiên thỏa mãn 2n  = 256 .Khi đó n = ...................... Câu 3:Cho số a nguyên dương khi đó kết quả của phép tính 0:(2a) bằng .....................Câu 4:Nếu x+13=5 thì x bằng .................Câu 5:Biết: 15.23+4.32-5.7=a2 , trong đó a là số tự nhiên. Khi đó giá trị của a là ...................Câu 6:Biết x thuộc tập hợp các ước...
Đọc tiếp

Câu 1:
Kết quả của phép tính (-5) + (-6) + (-7) là ...........

Câu 2:
Với n là số tự nhiên thỏa mãn 2n  = 256 .Khi đó n = ...................... 

Câu 3:
Cho số a nguyên dương khi đó kết quả của phép tính 0:(2a) bằng .....................

Câu 4:
Nếu x+13=5 thì x bằng .................

Câu 5:
Biết: 15.23+4.32-5.7=a2 , trong đó a là số tự nhiên. Khi đó giá trị của a là ...................

Câu 6:
Biết x thuộc tập hợp các ước của 36 và \(x\ge6\) Khi đó có tất cả ................ giá trị của x thỏa mãn

Câu 7:
Kết quả của phép tính: \(5.\left(27-17\right)^2-6^{11}:6^3:6^6\) bằng .....................

Câu 8:
Số tự nhiên n lớn nhất có 3 chữ số khi chia cho 8 thì dư 7 còn chia 31 thì dư 28. Vậy giá trị của n là ................

Câu 9:
Cho số nguyên n, biết n thỏa mãn: \(n^2+3n-13\) chia hết cho \(n+3\) Vậy giá trị nhỏ nhất của n là ...............

Câu 10:
Tập hợp các số nguyên tố p để p+10 và p+14 đều là các số nguyên tố là S={...............} 
(Nhập các giá trị theo thứ tự tăng dần,ngăn cách nhau bởi dấu ";" )

4
7 tháng 3 2016

vòng mấy đây bạn

7 tháng 3 2016

vòng 15 bạn nhá

9 tháng 11 2016

_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_

ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

1
25 tháng 11 2024

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿