K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Vì x , y là các số tự nhiên lớn hơn 1 nên giả sử 1 < x ≤ y .

 Ta có x + 1 ⋮ y => x + 1 = ky (k ∈ N* )

     => ky = x + 1 ≤ y + 1 < y + y = 2y

     => ky < 2y

     => k < 2, mà k ∈ N* nên suy ra: k = 1 là thỏa mãn.

     => x + 1 = y

+) Ta có: y + 1 ⋮ x

       =>      x + 1 + 1 ⋮ x

      =>      x + 2 ⋮ x, mà x ⋮ x nên:   2 ⋮ x

     => x ∈ {1; 2}

TH1: Với x = 1 => y = 1 + 1 = 2 (Thỏa mãn)

TH2: Với x = 2 => y = 1 + 2 = 3 (Thỏa mãn).

 ( x ,  y ) ∈ {(1, 2); (2, 3); (2, 1); (3, 2)}.

7 tháng 2 2020

Em xem lại bài của mình nhé Hân!

Đề bài là tìm các số tự nhiên lớn hơn x, y lớn hơn 1 cơ mà

22 tháng 5 2015

Giả sử 1 \(<\) x \(\le\) y. Đặt x + 1 = ky với k \(\in\) N*.

Ta có ky = x + 1 \(\le\) y + 1 \(<\) y + y = 2y.

Do ky < 2y nên k < 2. Ta lại có k \(\in\) N* nên k = 1.

Thay k = 1 vào x + 1 = ky được x + 1 = y

Theo đề bài thì y + 1 chia hết cho x \(\Rightarrow\) x + 1 + 1 chia hết cho x \(\Leftrightarrow\) x + 2 chia hết cho x.

\(\Rightarrow\)  2 chia hết cho x.

Vì x \(\in\) N nên x \(\in\) {1 ; 2}

Với x = 1 thì y = 1 + 1 = 2

Với x = 2 thì y = 2 + 1 = 3

Vậy (x ; y) = {(1 ; 2) ; (2 ; 3)} 

Bài giải         :

Vì x, y là các số tự nhiên lớn hơn 1 nên giả sử 1 < x ≤ y.

+) Ta có x + 1 ⋮ y => x + 1 = ky (k ∈ N*)

     => ky = x + 1 ≤ y + 1 < y + y = 2y

     => ky < 2y

     => k < 2, mà k ∈ N* nên suy ra: k = 1 là thỏa mãn.

     => x + 1 = y

+) Ta có: y + 1 ⋮ x

       =>      x + 1 + 1 ⋮ x

      =>      x + 2 ⋮ x, mà x ⋮ x nên:   2 ⋮ x

     => x ∈ {1; 2}

TH1: Với x = 1 => y = 1 + 1 = 2 (Thỏa mãn)

TH2: Với x = 2 => y = 1 + 2 = 3 (Thỏa mãn).

Đ/s: (x, y) ∈ {(1, 2); (2, 3); (2, 1); (3, 2)}.

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

1/ Đề là $11y$ hay $11^y$ vậy bạn? Bạn xem lại đề.

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

2/

$n\vdots 65, n\vdots 125$
$\Rightarrow n=BC(65,125)$

$\Rightarrow n\vdots BCNN(65,125)$

$\Rightarrow n\vdots 1625$

$\Rightarrow n=1625k$ với $k$ tự nhiên.

$n=1625k=5^3.13.k$

Nếu $k=1$ thì $n$ có $(3+1)(1+1)=8$ ước (loại) 

Nếu $k>1$ thì $n$ có ít nhất $(3+1)(1+1)(1+1)=16$ ước nguyên tố.

$n$ có đúng 16 ước nguyên tố khi mà $k$ là 1 số nguyên tố.

Vậy $n=1625p$ với $p$ là số nguyên tố.