Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
A = (a+b)(1/a+1/b)
Có: \(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)
=> ĐPCM
1.b)
Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}
Đề câu cuối sai chỗ x phải là n
a)\(-x^2+4x-9=-5-\left(x^2-4x+4\right)=-5-\left(x-2\right)^2\)
(x-2)2\(\ge0\forall x\in R\)
=>-(x-2)2\(\le0\forall x\in R\)
=>-5-(x-2)2\(\le-5\forall x\in R\)(ĐPCM)
b)\(x^2-2x+9=\left(x^2-2x+1\right)+8=\left(x-1\right)^2+8\)
(x-1)2\(\ge0\forall x\in R\)
=>(x-1)2+8\(\ge8\forall x\in R\)(đpcm)
c)11x-7<8x+2
<=>11x-8x<2+7
<=>3x<9
<=>x<3
Mà x nguyên dương=>x={1;2}
d)(n+2)2-(n-3)(n+3)\(\le\)40
<=>n2+4n+4-n2+9\(\le\)40
<=>4n+13\(\le\)40
<=>4n\(\le\)27
<=>n\(\le\)\(\dfrac{27}{4}< 7\)
n là số tự nhiên =>n={0;1;...;6}
vì (3^a-1).......(3^a-6) là 6 số tự nhiên liên tiếp nên (3^a-1)......(3^a-6) :6
=> (3^a-1)......(3^a-6) chẵn
mà 20159 lẻ
nên 2016 lẻ
=> b=0
ta có : (3^a-1) .....(3^a-6) = 1+ 20159
=> (3^a-1) ....(3^a-6)= 20160 =8:7;6;5;4;3
=> 3^a-1= 8
3^a=9
a=2
vậy ..............
\(3.3^{n-1}.\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)
\(\Rightarrow3.3^{n-1}.6.3^{n+2}+3.3.3^{n-1}-2.3^n.3^{n+3}+1.2.3^n=405\)
\(\Rightarrow3^{1+n-1}.6.3^n.3^2+3^{1+1+n-1}-2.3^n.3^n.3^3+3^n.2=405\)
\(\Rightarrow3^n.\left(6.3^2\right).3^n+3^{n+1}-\left(2.3^3\right).3^{n+n}+3^n.2=405\)
\(\Rightarrow\left(3^n.3^n\right).54+3^{n+1}-54.3^{2n}+3^n.2=405\)
\(\Rightarrow3^{2n}.54+3^{n+1}-3^{2n}.54+3^n.2=405\Rightarrow3^{n+1}+3^n.2=405\)
\(\Rightarrow3^n.3+3^n.2=405\Rightarrow3^n.5=405\Rightarrow3^n=81=3^4\Rightarrow n=4\)
Tất cả các đẳng thức trên đều được chứng minh theo phương pháp quy nạp
Đặt n = k thì có đẳng thức
Chứng minh rằng n = k+1 cũng đúng ( vế trái (k+1) = vế phải (k+1) )
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)
\(\Leftrightarrow15-12n+27+2n>0\)
\(\Leftrightarrow42-10n>0\)
\(\Leftrightarrow-10n>-42\Leftrightarrow n< 4,2\)
Vậy \(S=\left\{n|n< 4,2\right\}\)
b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)
\(\Leftrightarrow n^2+4n+4-n^2+9\le40\)
\(\Leftrightarrow4n+13\le40\)
\(\Leftrightarrow4n\le27\Leftrightarrow n\le6,75\)
Vậy \(S=\left\{n|n\le6,75\right\}\)