Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
Ta có: \(n^2+n-17\) \(⋮\)\(n-5\)
\(\Rightarrow\) \(n^2-5n+6n-30+13\) \(⋮\)\(n-5\)
\(\Rightarrow\) \(\left(n^2-5n\right)+\left(6n-30\right)+13\) \(⋮\)\(n-5\)
\(\Rightarrow\) \(n\left(n-5\right)+6\left(n-5\right)+13\)
mà \(n-5\) \(⋮\)\(n-5\)
\(\Rightarrow\)\(n\left(n-5\right)\) \(⋮\)\(n-5\)
\(\Rightarrow\)\(6\left(n-5\right)\) \(⋮\) \(n-5\)
Vậy \(13\)\(⋮\)\(n-5\)
\(\Rightarrow\)\(n-5\)\(\in\)\(Ư\left(13\right)\)
Em tự làm tiếp nha
Bài 1 :
(2x + 1)(y - 5) = 12
=> 2x + 1 \(\in\)Ư(12)
Vì x \(\ge\)0 => 2x + 1 \(\ge\)1
Mà 2x + 1 chia 2 dư 1
=> 2x + 1 \(\in\){1; 3}.
Ta có bảng sau:
2x + 1 | 1 | 3 |
2x | 0 | 2 |
x | 0 | 1 |
y - 5 | 12 | 4 |
y | 17 | 9 |
Vậy : (x; y) \(\in\){(0; 17); (1; 9)}
Bài 2:
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2(2n - 1) - 3 chia hết cho 2n - 1
Mà 2(2n - 1) chia hết cho 2n - 1
=> 3 chia hết cho 2n - 1 = > 2n - 1 \(\in\)Ư(3) = {1; 3; -1; -3}
Mà n \(\ge\) 0 => 2n - 1 \(\ge\)1 => 2n - 1 \(\in\){-1; 1; 3}
Ta có bàng sau:
2n - 1 | -1 | 1 | 3 |
2n | 0 | 2 | 4 |
n | 0 | 1 | 2 |
Vậy : n \(\in\){0; 1; 2}