K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)

2 tháng 11 2023

Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.

21 tháng 10 2017
m^4+4n^4=(m^2-2mn+2n^2)*(m^2+2mn+2n^2) Do m,n thuộc N, m^4+4n^4 nguyên tố => m^2-2mn+2n^2=1 Hoặc m^2+2mn+2n^2=1 Với m^2-2mn+2n^2=1 <=> (m-n)^2+n^2=1 <=> m-n = 0, n=1 Hoặc m-n=(+-)1,n=0 Sau đó bạn suy ra m,n nhé (chú ý m,n thuộc N) Với m^2+2mn+2n^2=1 tương tự nhé ! Chú ý rằng m+n >= 0 Ok chào bạn. Chúc bạn học tốt. Mình không cần k cũng được, chỉ là một thành phần đi cmt dạo thôi ^^
5 tháng 12 2019

Với n=0 thì \(A=1\) không là số nguyên tố

Với n=1 thì \(A=3\) là số nguyên tố

Với \(n\ge2\) ta có:

\(A=n^{2018}+n^{2017}+1\)

\(=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left[\left(n^3\right)^{672}-1\right]+n\left[\left(n^3\right)^{672}-1\right]+\left(n^2+n+1\right)\)

\(=n^2\left(n^3-1\right)\cdot A+n\left(n^3-1\right)\cdot B+n^2+n+1\)

\(=\left(n^2+n+1\right)\cdot A'+\left(n^2+n+1\right)\cdot B'+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(A'+B'+1\right)\) là hợp số với \(\forall n\ge2\)