K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

để\(\frac{2n+1}{3n+2}\)có giá trị nguyên => \(2n+1⋮3n+2=>3\left(2n+1\right)⋮3n+2\)
                                                                                         \(< =>6n+3⋮3n+2\)(1)
   
                          Ta lại có : \(3n+2⋮3n+2\)với mọi n \(=>6n+4⋮3n+2\)(2)
                           Từ (1) và (2) suy ra \(\left(6n+4\right)-\left(6n+3\right)⋮3n+2\)<=> \(1⋮3n+2\)
                           Vì n là STN,do đó \(3n+2\inƯ\left(1\right)=\left(1\right)\)
                           Với 3n+2=1=>n=\(-\frac{1}{3}\)(loại)
                          Vậy k có số tự nhiên n thỏa mãn,các bài còn lại làm tương tự 
                           

20 tháng 6 2019

ai  trả lời hết mik cảm ơn

cần gấp ạ

a) ĐKXĐ: \(n\ne3\)

Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)

\(\Leftrightarrow n-3-2⋮n-3\)

mà \(n-3⋮n-3\)

nên \(-2⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(-2\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{4;2;5;1\right\}\)

Vậy: \(n\in\left\{4;2;5;1\right\}\)

11 tháng 5 2021

dạ còn B,C,D nữa ạ

4 tháng 3 2022

giúp mik nhanh vs các bn ơiiiiii

:(

4 tháng 3 2022

-bạn tự lập bảng nhé 

a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

n-31-111-11
n4214-8

 

c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

22 tháng 2 2022

\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

3n-11-12-23-34-46-612-12
nloại01loạiloạiloạiloại-1loạiloạiloạiloại

 

c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

n-31-13-39-9
n426012-6

 

27 tháng 2 2023

Có đúng không

 

20 tháng 6 2019

\(a,\frac{3n-2}{n+1}=\frac{3n+3-5}{n+1}=\frac{3\left(n+1\right)-5}{n+1}\)

\(=3-\frac{5}{n+1}\)

\(\text{Để }\frac{3n-2}{n+1}\in Z\)

\(\Rightarrow3-\frac{5}{n+1}\in Z\)

\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)

\(\Rightarrow n=\left\{0;4;-2;-6\right\}\)

13 tháng 6 2018

a) ta có: \(\frac{3n+15}{n+1}=\frac{3n+3+12}{n+1}=\frac{3.\left(n+1\right)+12}{n+1}=3+\frac{12}{n+1}\)

Để 3n+15/n+1 có giá trị nguyên

\(\Rightarrow\frac{12}{n+1}\inℤ\Rightarrow12⋮n+1\)

\(\Rightarrow n+1\inƯ_{\left(12\right)}=\left(1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right)\)

rùi bn thay giá trị của n+1 vào để tìm n nhé!

b) ta có: \(\frac{3n+5}{n-2}=\frac{3n-6+11}{n-2}=\frac{3.\left(n-2\right)+11}{n-2}=3+\frac{11}{n-2}\)

Để 3n+5/n-2 có giá trị nguyên

=> 11/n-2 thuộc z

=> 11 chia hết cho n-2 => n-2 thuộc Ư(11) = (1;-1;11;-11)

c) ta có: \(\frac{2n+13}{n-1}=\frac{2n-2+15}{n-1}=\frac{2.\left(n-1\right)+15}{n-1}=2+\frac{15}{n-1}\)

Để 2n+13/n-1 có giá trị nguyên => 15/n-1 thuộc Z

=> 15 chia hết cho n-1 => n-1 thuộc Ư(15)=(1;-1;3;-3;5;-5;15;-15)

d) ta có: \(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=\frac{3.\left(2n+1\right)+2}{2n+1}=3+\frac{2}{2n+1}\)

a, \(\frac{3n+5}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=\frac{2}{n+1}\)

\(\Rightarrow n+1\in2=\left\{\pm1;\pm2\right\}\)

n + 11-12-2
n0-21-3

b, \(\frac{n+13}{n+1}=\frac{n+1+12}{n+1}=\frac{12}{n+1}\)

\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

n + 11-12-23-34-46-612-12
n0-21-32-43-55-711-13

c, \(\frac{3n+15}{n+1}=\frac{3\left(n+1\right)+12}{n+1}=\frac{12}{n+1}\)

\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

n + 11-12-23-34-46-612-12
n0-21-32-43-55-711-13

a: A nguyên

=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

=>n thuộc {2/3;0;1;-1/3;4/3;-2/3;5/3;-1;7/3;-5/3;13/3;-11/3}

b: B nguyên

=>2n+3 chia hết cho 7

=>2n+3=7k(k\(\in Z\))

=>\(n=\dfrac{7k-3}{2}\left(k\in Z\right)\)

c: C nguyên

=>2n+5 chia hết cho n-3

=>2n-6+11 chia hết cho n-3

=>n-3 thuộc {1;-1;11;-11}

=>n thuộc {4;2;12;-8}

b) Gọi \(d\inƯC\left(3n+2;2n+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\2n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+4⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(3n+2;2n+1\right)=1\)

hay \(B=\dfrac{3n+2}{2n+1}\) là phân số tối giản (đpcm)

9 tháng 4 2021

Gọi ƯCLN(n-1,n-2)=d

n-1⋮d 

n-2⋮d

(n-1)-(n-2)⋮d

1⋮d ⇒ƯCLN(n-1,n-2)=1

Vậy n-1/n-2 là ps tối giản

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên