Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : \(12n^2-5n-25\)
\(=\left(4n+5\right)\left(3n-5\right)\)
Vì \(12n^2-5n-25\)là số nguyên tố
\(\Rightarrow\)Nó chỉ có 2 ước nguyên dương là 1 và chính nó
mà \(4n+5>3n-5\forall n\inℕ\)
\(\Rightarrow3n-5=1\)
\(\Rightarrow n=2\)
Thử lại : \(\left(2.4+5\right)\left(2.3-1\right)=13\)(là số nguyên tố)
Vậy \(n=2\)
b)Tương tự nhé cậu , ta tìm được \(n=0\)
\(C=n^3-n^2+n-1=n^2\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n^2+1\right)\)
Ta có C là số nguyên tố nên C có ước là 1
TH1: n-1=1 => n=2 => C=5 (là số nguyên tố)
TH2: n2+1= 1 => n=0 => C= -1 (không là số nguyên tố)
Vậy với n=2 thì C là số nguyên tố
Có C = \(\left(n-1\right)\left(n^2+1\right)\)
Do C nguyên tố nên hoặc (n-1)=1 hoặc (n2+1)=1
TH1: n-1=1=>n=2 => C = 5 ( chọn )
TH2: n^2+1=1 => n=0 => C = -1 (loại)
Vậy n=2
a) \(A=12n^2-5n-25\)
\(=12n^2+15n-20n-25\)
\(=3n\left(4n+5\right)-5\left(4n+5\right)\)
\(=\left(3n-5\right)\left(4n+5\right)\)
Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng chỉ gồm 1 và chính nó
nên A là số nguyên tố thì: \(\orbr{\begin{cases}3n-5=1\\4n+5=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\\n=-1\end{cases}}\)
do n là số tự nhiên nên \(n=2\)
thử lại: n=2 thì A = 13 là số nguyên tố
Vậy n = 2
b) \(B=8n^2+10n+3\)
\(=8n+6n+4n+3\)
\(=2n\left(4n+3\right)+\left(4n+3\right)\)
\(=\left(2n+1\right)\left(4n+3\right)\)
Để B là số nguyên tố thì: \(\orbr{\begin{cases}2n+1=1\\4n+3=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=0\\n=-\frac{1}{2}\end{cases}}\)
Do n là số tự nhiên nên n = 0
Thử lại: \(n=0\)thì \(B=3\)là số nguyên tố
Vậy \(n=0\)
\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)
Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)
\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)
\(\Rightarrow A⋮2\forall n\in N\)
Mà 2 là số nguyên tố duy nhất mà chia hết cho 2
\(\Rightarrow n^3-6n^2+9n-2=2\)
\(\Leftrightarrow n^3-6n^2+9n-4=0\)
Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))
Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.
\(A=n^3+n^2-n+2=\left(n+2\right)\left(n^2-n+1\right)\)là số nguyên tố suy ra
\(\orbr{\begin{cases}n+2=1\\n^2-n+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=-1\\n=1;n=0\end{cases}}\)
Thử lại đều thỏa mãn.