Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8n+193}{4n+3}\)
\(=\frac{\left(4+4\right)n+190+3}{4n+3}\)
\(=\frac{4n+3+4+190}{4n+3}\)
\(=\frac{4n+3}{4n+3}+\frac{194}{4n+3}\)
Suy ra 4n + 3 thuộc ước của 194
Còn lại bn tự làm nha
a)
\(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
\(\Rightarrow4n+3\in U\left(187\right)=1;11;17;187\)
4n+3 | 1 | 11 | 17 | 187 |
n | \(-\frac{1}{2}\) | 2 | \(\frac{7}{2}\) | 46 |
\(\Rightarrow n\in2;46\)
b)
Để A tối giản thì 187 không chhia hết cho 4n+3
\(\Rightarrow4n+3\ne4.11k+11;4n+3\ne4.17h+51\)
\(\Rightarrow n\ne11k+2;n\ne17h+12\)
\(\Leftrightarrow-4n+3⋮n+1\)
\(\Leftrightarrow-4n-4+7⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;7\right\}\)
hay \(n\in\left\{0;6\right\}\)
\(3-4n⋮n+1\Rightarrow7-4-4n⋮n+1\)
\(\Rightarrow7-4\left(n+1\right)⋮n+1\)
\(\Rightarrow7⋮n+1\)
\(\Rightarrow n+1=Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow n=\left\{-8;-2;0;6\right\}\)
Do n là số tự nhiên \(\Rightarrow n=\left\{0;6\right\}\)
⇔(−4n+3)⋮(n+1)
\Leftrightarrow-4n-4+7⋮n+1⇔(−4n−4+7)⋮(n+1)
\Leftrightarrow n+1\in\left\{1;7\right\}⇔n+1∈{1;7}
hoặc
n\in\left\{0;6\right\}n∈{0;6}
⇔−4n+3⋮n+1⇔−4�+3⋮�+1
⇔−4n−4+7⋮n+1⇔−4�−4+7⋮�+1
⇔n+1∈{1;7}⇔�+1∈{1;7}
hay n∈{0;6}
⇔−4n+3⋮n+1⇔−4�+3⋮�+1
⇔−4n−4+7⋮n+1⇔−4�−4+7⋮�+1
⇔n+1∈{1;7}⇔�+1∈{1;7}
hay n∈{0;6}
Vì 2n+1 là số lẻ
và 4n+4 là số chẵn
nên 2n+1 và 4n+4 là hai số nguyên tố cùng nhau
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a) Ta có: \(n+1\inƯ\left(5\right)\)
\(\Rightarrow n+1\in\left\{1;5\right\}\)
\(\Rightarrow n\in\left\{0;4\right\}\)
_Học tốt_
2n+ 5 là số lẻ mà bọi của 4 là số chẵn
vậy ước của 2n + 1 và 2n + 5 không là 4 với mọi n thuộc N
học tốt
Gọi d là ƯC ( n+1,2n+3)
Suy ra n+1 \(⋮\)d ; 2n +3 \(⋮\)d
n +1\(⋮\)d \(\Rightarrow\)2 (n+1)\(⋮\)d
\(\Rightarrow\)2n +2 \(⋮\)d
Do đó : (2n + 3) - (2n +2 )\(⋮\)d
2n+3 - 2n -2 \(⋮\)d
1\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư (1)={1}
\(\Rightarrow\)ƯC (n +1 , 2n +3 ) = {1}
\(\Rightarrow\)ƯCLN (n +1, 2n +3 ) =1
Bài sau tương tự nha bn.Chúc bn học tốt !!!
có cần lời giải ko