Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2m + 2019 = |n-2018| + n - 2018
+ Nếu n < 2018 thì |n-2018| = -n + 2018
Suy ra: 2m + 2019 = -n + 2018 + n - 2018 = 0 (loại vì \(m\inℕ\))
+ Nếu \(n\ge2018\)thì |n-2018| = n - 2018
Suy ra: 2m + 2019 = (n - 2018) + (n - 2018) = 2(n - 2018)
Suy ra: 2m là số lẻ => m=0 (t/m)
Khi đó: 20 + 2019 = 2(n - 2018)
1 + 2019 = 2n - 2018
2020 + 2018 = 2n
4038 = 2n
n = 2019 (t/m)
Vậy m=0; n=2019
a) Ta có:
\(\left|x-2017\right|\ge0\) với \(\forall x\)
\(\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu
Vậy \(x;y\in\varnothing\)
b) Ta có:
\(3.\left|x-y\right|^5\ge0\)
\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)
\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)
Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)
\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)
Câu 2:
Ta có: \(x^2=1\)
=>x=1 hoặc x=-1
=>x là số hữu tỉ
\(\)Mk ko ghi lại đề đâu nha
\(Xet2TH:\left(+\right)n\ge2018\Rightarrow|n-2018|=n-2018\Rightarrow2018^m+4035=2n-2018\)
\(2n-2018\left(chẵn\right)\Rightarrow2018^mlẻ\Rightarrow m=0\Rightarrow2n-2018=4036\Rightarrow n=3027\)
\(\left(+\right)n< 2018\Rightarrow|n-2018|=2018-n\Rightarrow2018^m+4035=2018.Mà:2018^m\ge0\left(loại\right)\)
\(Vậy:m=0;n=3027\)