K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Đặt 2k + 24 + 27= a(a thuộc N) . Ta có:

\(2^k+2^4+2^7=a^2\)

\(\Leftrightarrow a^2-144=2^k\)

\(\Leftrightarrow\left(a+12\right)\left(a-12\right)=2^k\)

Vì a, k thuộc N nên 

\(\hept{\begin{cases}a-12\ge1\\a+12\ge25\end{cases}\Leftrightarrow\left(a-12\right)\left(a+12\right)\ge25.1\Leftrightarrow2^k\ge25\Leftrightarrow k\ge5}\)

Chịu!!!!!!!

Cao thủ nào giải giúp với ạ!!!!!!!!!!!!

17 tháng 2 2020

làm giống Nguyễn Huệ Lam đến (a+12)(a-12)=2k nha

tiếp 

đặt a+12=2m  a-12=2n    m>n,    m+n=k

2m -2n =a+12-a+12=24

2m-2n = 8*3

suy ra 2n(2m-n-1)=23*3

suy ra n=3

2m-n-1=3

\(\Leftrightarrow\)m-n=2 

m=n+2

m=5

k=8

17 tháng 1 2023

Với k \(\le4\) => không có k thỏa mãn 

Với k > 4 : P = 2k + 24 + 27 

 = 24(2k - 4 + 23 + 1)

= 24(2k - 4 + 9)

= 16(2k - 4 + 9) 

 P chính phương <=> 2k - 4 + 9 chính phương

đặt 2k - 4 + 9 = y2 (y \(\inℕ\))

<=> 2k - 4 = (y - 3)(y + 3)  (*)

Đặt \(\left\{{}\begin{matrix}y-3=2^m\\y+3=2^n\end{matrix}\right.\left(m;n\inℕ\right)\Leftrightarrow2^n-2^m=6\)

<=> 2m(2n - m - 1) = 6

<=> \(\left\{{}\begin{matrix}2^m=2\\2^{n-m}-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\n=3\end{matrix}\right.\)

khi đó phương trình (*) <=> k - 4 = m + n 

<=> k - 4 = 1 + 3 

<=> k = 8 

28 tháng 2 2021

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

28 tháng 2 2021

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

13 tháng 7 2018

1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

2/

Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)

\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)

\(\Rightarrow m^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)

Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)

\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)

Vậy n = 1002

13 tháng 7 2018

các bạn thay n2 ở câu 1 = n3 cho mk nhé

29 tháng 11 2018

Thay x = 1 vào phương trình (3x + 2k – 5)(x – 3k + 1) = 0, ta có:

(3.1 + 2k – 5)(1 – 3k + 1) = 0

⇔ (2k – 2)(2 – 3k) = 0 ⇔ 2k – 2 = 0 hoặc 2 – 3k = 0

      2k – 2 = 0 ⇔ k = 1

      2 – 3k = 0 ⇔ k = 2/3

Vậy với k = 1 hoặc k = 2/3 thì phương trình đã cho có nghiệm x = 1