Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm câu a,b thôi nha !
a)Tính A khi x=1;x=2;x=5/2
x=1
Thay x vào biểu thức A, ta có:
\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)
x=2
Thay x vào biểu thức A ta có:
\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)
x=5/2
Thay x vào biểu thức A ta có:
\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)
b)Tìm x thuộc Z để A là số nguyên:
\(A=\frac{3x+2}{x-3}\)
Để A là số nguyên thì:
=>\(3x+2⋮x-3\)
\(\Rightarrow3x-9+11⋮x-3\)
\(\Rightarrow3\left(x-3\right)+11⋮x-3\)
\(\Rightarrow11⋮x-3\)
\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)
Xét trường hợp
\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)
Vậy A là số nguyên thì
\(x\inƯ\left(4;14\right)\)
Các bài còn lại làm tương tự !
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
b = 3 vì mẫu số của hiệu là 15 = 5 x b = 5 x 3 nên a = 4
4/5 - 2/3 = 2/15
\(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\)
\(\Rightarrow\frac{a.b}{5.b}-\frac{2.5}{b.5}=\frac{2}{15}\)
Tìm b: Vì kết quả có mẫu là \(15\Rightarrow5.b=b.5=15\Rightarrow b=15:5=3\)
Tìm a: \(ab-2.5=2\)thay \(b=3\)ta có: \(a.3-2.5=2\)
\(a.3-10=2\)
\(a="2+10":3=4\)
Vậy : \(a=3;b=4\)
Bài 1 :
x < 0 \(\Leftrightarrow\) 3a - 5 < -2 \(\Leftrightarrow\) 3a < 3 \(\Leftrightarrow\) a < 1
Bài 2 :
a) \(\frac{3a-5}{a}=3+\frac{5}{a}\in Z\)\(\Leftrightarrow a\inƯ\left(5\right)\)
\(\Leftrightarrow a\in\left\{-5;-1;1;5\right\}\)
b) \(\frac{2b-7}{b+2}=\frac{2b+4-11}{b+2}=2-\frac{11}{b+2}\in Z\) \(\Leftrightarrow b+2\inƯ\left(11\right)\)
\(\Leftrightarrow b+2\in\left\{-11;-1;1;11\right\}\)
\(\Leftrightarrow b\in\left\{-13;-3;-1;9\right\}\)
Bài 1:
Theo đề, ta có:
\(\dfrac{-13}{2}< \dfrac{11}{a}< \dfrac{-13}{3}\)
\(\Leftrightarrow\dfrac{-143}{26}< \dfrac{-143}{-13a}< \dfrac{-143}{33}\)
\(\Leftrightarrow\dfrac{143}{26}>\dfrac{143}{-13a}>\dfrac{143}{33}\)
hay \(a\in\varnothing\)