K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

Ta có : 

\(2a=\frac{a}{\frac{1}{2}};3b=\frac{b}{\frac{1}{3}};5b=\frac{b}{\frac{1}{5}};7c=\frac{c}{\frac{1}{7}}\)

Lại có \(\hept{\begin{cases}\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}\\\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{7}}\end{cases}}\Rightarrow\frac{a}{\frac{3}{2}}=b=\frac{c}{\frac{5}{7}}\Leftrightarrow\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}=\frac{3a-7b+5c}{\frac{9}{2}-1+\frac{25}{7}}=\frac{-30}{\frac{99}{14}}=\frac{-140}{33}\)

\(\Rightarrow\hept{\begin{cases}3a=\frac{-140}{33}\cdot\frac{9}{2}=\frac{-210}{11}\Rightarrow a=\frac{-70}{11}\\7b=\frac{-140}{33}\Rightarrow b=\frac{-20}{33}\\5c=\frac{-140}{33}\cdot\frac{25}{7}=\frac{-500}{33}\Rightarrow c=\frac{-100}{33}\end{cases}}\)

Vậy....

Chắc sai =))

6 tháng 5 2015

Áp dụng dãy tỉ số bằng nhau => \(\frac{2a}{5b}=\frac{5b}{6c}=\frac{6c}{7d}=\frac{7d}{2a}=\frac{2a+5b+6c+7d}{5b+6c+7d+2a}=1\)

=> \(B=1+1+1+1=4\)

5 tháng 5 2015

Các bạn giúp ,mình gâp nhé

Các bạn ghi cả lời  giải cho mình nhé

6 tháng 11 2021

giúp mình nhé

6 tháng 11 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\2b+2+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1+1=2\\b=1\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}2a-4+a=7\\b=4-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{11}{3}\\b=4-\dfrac{11}{3}=\dfrac{1}{3}\end{matrix}\right.\)

29 tháng 11 2016

Ta có: 2a=3b;5b=7c\(\Leftrightarrow\frac{a}{3}=\frac{b}{2},\frac{b}{7}=\frac{c}{5}\Leftrightarrow\frac{1}{7}\times\frac{a}{3}=\frac{1}{7}\times\frac{b}{2},\frac{b}{7}\times\frac{1}{2}=\frac{c}{5}\times\frac{1}{2}\)

<=> \(\frac{a}{21}=\frac{b}{14},\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

<=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\) và 3a - 7b + 5c = - 30

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{-30}{15}=-2\)

Do đó: \(\frac{a}{21}=-2\Rightarrow a=-42\)

\(\frac{b}{14}=-2\Rightarrow-28\)

\(\frac{c}{10}=-2\Rightarrow c=-20\)

Vậy 3 số a,b,c lần lượt là -42;-28 và -20.

14 tháng 9 2020

Ta có : 2a = 3b => \(\frac{a}{3}=\frac{b}{2}\)

5b = 7c => \(\frac{b}{7}=\frac{c}{5}\)

=> \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

+) \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)

+) \(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)

=> \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)

Từ đó suy ra a = 2.21 = 42,b = 2.14 = 28,c = 2.10 = 20

14 tháng 9 2020

Ta có:\(2a=3b\)\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)

\(5b=7c\)\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)\(\Rightarrow\frac{b}{14}=\frac{c}{10}\)

Suy ra:\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Đặt\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)

\(\Rightarrow\hept{\begin{cases}a=21k\\b=14k\\c=10k\end{cases}}\)

\(3a+5c-7b=30\)

\(\Rightarrow3.21k+5.10k-7.14k=30\)

\(\Leftrightarrow63k+50k-98k=30\)

\(\Leftrightarrow15k=30\)

\(\Leftrightarrow k=2\)

\(\Rightarrow\hept{\begin{cases}a=2.21=42\\b=2.14=28\\c=2.10=20\end{cases}}\)

Vậy\(\hept{\begin{cases}a=42\\b=28\\c=20\end{cases}}\)

Linz