K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Phân tích phân số \(\dfrac{30}{43}\) ta có:

\(\dfrac{30}{43}=\dfrac{1}{\dfrac{43}{30}}=\dfrac{1}{1+\dfrac{13}{30}}=\dfrac{1}{1+\dfrac{1}{\dfrac{30}{13}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{4}{13}}}\)

\(=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{13}{4}}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4}}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)

Vậy: \(\left\{{}\begin{matrix}a=1\\b=2\\c=3\\d=4\end{matrix}\right.\)

7 tháng 4 2017

\(\dfrac{30}{43}=\dfrac{1}{\dfrac{43}{30}}=\dfrac{1}{1+\dfrac{13}{30}}=\dfrac{1}{1+\dfrac{1}{\dfrac{30}{13}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{4}{13}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{13}{4}}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4}}}}\)
Vậy a=1; b=2 ; c=3 ; d=4

7 tháng 4 2017

ta thấy : \(\dfrac{a}{b}\) = \(\dfrac{1}{\dfrac{b}{a}}\)

\(\Rightarrow\) \(\dfrac{30}{43}\) = \(\dfrac{1}{\dfrac{43}{30}}\)

= \(\dfrac{1}{1+\dfrac{13}{30}}\)

= \(\dfrac{1}{1+\dfrac{1}{\dfrac{30}{13}}}\)

= \(\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{15}}}\)

= \(\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{15}{2}}}}\)

=\(\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{7+\dfrac{1}{2}}}}\)

Vậy a = 1; b = 2; c = 7; d = 4

16 tháng 12

có thể coi a=b=c=d từ đó thì ra 2 nghiệm đều thỏa mãn biểu thức là:

x = {-2;2}

17 tháng 5 2018

\(\dfrac{30}{43}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{43}{30}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\\ \Leftrightarrow\dfrac{1}{1+\dfrac{13}{30}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\\ \Leftrightarrow\dfrac{1}{1+\dfrac{1}{\dfrac{30}{13}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\\ \Leftrightarrow\dfrac{1}{1+\dfrac{1}{2+\dfrac{4}{13}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)

\(\\ \Leftrightarrow\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{13}{4}}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\\\Leftrightarrow\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4}}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\\d=4\end{matrix}\right.\)

Vậy............

17 tháng 5 2018

bấm máy tính casio, ta được:

a=1; b=2; c=3; d=4

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

27 tháng 3 2021

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

28 tháng 1 2022

a, \(\dfrac{x}{2}=-\dfrac{5}{y}\Rightarrow xy=-10\Rightarrow x;y\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

x1-12-25-510-10
y-1010-55-22-11

 

c, \(\dfrac{3}{x-1}=y+1\Rightarrow\left(y+1\right)\left(x-1\right)=3\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x - 11-13-3
y + 13-31-1
x204-2
y2-40-2

 

b: =>xy=12

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)

16 tháng 3 2021

\(\dfrac{1}{a}-\dfrac{1}{b}=1\)

\(\Leftrightarrow\dfrac{b-a}{ab}=1\)

\(\Leftrightarrow b-a=ab\)

\(\Leftrightarrow a+ab-b=0\)

 

12 tháng 3 2022

a)4/5+x=2/3

x=2/3-4/5

x=-2/15

b)-5/6-x=2/3

x=-5/6-2/3

x=-3/2

c)1/2x+3/4=-3/10

1/2x=-3/10-3/4

1/2x=-21/20

x=-21/20:1/2

x=-21/10

d)x/3-1/2=1/5

x/3=1/5+1/2

x/3=7/10

10x/30=21/30

10x=21

x=21:10

x=21/10

6 tháng 8 2023

a) \(\dfrac{n+2}{3}\) là số tự nhiên khi

\(n+2⋮3\)

\(\Rightarrow n+2\in\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{-1;1\right\}\left(n\in Z\right)\)

b)  \(\dfrac{7}{n-1}\) là số tự nhiên khi

\(7⋮n-1\)

\(\Rightarrow7n-7\left(n-1\right)⋮n-1\)

\(\Rightarrow7n-7n+7⋮n-1\)

\(\Rightarrow7⋮n-1\)

\(\Rightarrow n-1\in\left\{1;7\right\}\Rightarrow\Rightarrow n\in\left\{2;8\right\}\left(n\in Z\right)\)

c) \(\dfrac{n+1}{n-1}\) là sô tự nhiên khi

\(n+1⋮n-1\)

\(\Rightarrow n+1-\left(n-1\right)⋮n-1\)

\(\Rightarrow n+1-n+1⋮n-1\)

\(\Rightarrow2⋮n-1\)

\(\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\left(n\in Z\right)\)