Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình thì phân tích ra thành thế này
gọi số cần tìm là \(ab\) có:
\(ab=x^3;a+b=x^2\)(\(x\) là số tự nhiên mà khi lập phương lên thì bằng \(ab\), khi bình phương lên thì bằng \(a+b\))
Từ đó ta có: \(10a+b=x^3\)
\(a+b=x^2\)
Rồi suy ra được ab thì phải, mình không biết có đúng không nữa, nếu mà các bước mình làm đúng thì bạn nghiên cứu thêm nhé
Với n=4 thì
\(A=1^3+2^3+3^3+4^3=1+8+27+64=100\)
\(B=\left(1+2+3+4\right)^2=10^2=100\)
nên A=B
Với n=5 thì
\(A=1^3+2^3+3^3+4^3+5^3=1+8+27+64+125=225\)
\(B=\left(1+2+3+4+5\right)^2=15^2=225\)
nên A=B
Với n=6 thì
\(A=1^3+2^3+3^3+4^3+5^3+6^3=1+8+27+64+125+216=441\)
\(B=\left(1+2+3+4+5+6\right)^2=21^2=441\)
nên A=B
Đặt \(13p+1=n^3\left(n\in N\right)\)
\(\Leftrightarrow13p=n^3-1\)
\(\Leftrightarrow13p=\left(n-1\right)\left(n^2+n+1\right)\)
Trường hợp 1: \(n-1=13\forall n^2+n+1=p\)
\(\Leftrightarrow n=14\)
hay \(p=14^2+14+1=196+14+1=211\)(nhận)
Trường hợp 2: \(n-1=p\forall n^2+n+1=p\)
\(\Leftrightarrow n^2+2=13-p\)
\(\Leftrightarrow\left(p+1\right)^2=11-p\)
\(\Leftrightarrow p=2\)(nhận)
Vậy: \(p\in\left\{2;211\right\}\)
5757
25445
254
5434
853
Ghi rõ đề coi nào bn!