K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 giờ trước (21:19)

Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

=>x=2k; y=3k

\(xy^2=144\)

=>\(2k\cdot\left(3k\right)^2=144\)

=>\(2k\cdot9k^2=144\)

=>\(18k^3=144\)

=>\(k^3=8=2^3\)

=>k=2

=>\(\begin{cases}x=2\cdot2=4\\ y=3\cdot2=6\end{cases}\)

DH
Đỗ Hoàn
CTVHS VIP
16 tháng 8

\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)

\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)

\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)

\((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)

\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)

dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)

13 giờ trước (21:20)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

=>x=2k; y=3k; z=5k

Ta có: \(x^2+y^2-z^2=-48\)

=>\(\left(2k\right)^2+\left(3k\right)^2-\left(5k\right)^2=-48\)

=>\(4k^2+9k^2-25k^2=-48\)

=>\(-12k^2=-48\)

=>\(k^2=4\)

=>\(\left[\begin{array}{l}k=2\\ k=-2\end{array}\right.\)

TH1: k=2

=>\(\begin{cases}x=2\cdot2=4\\ y=3\cdot2=6\\ z=5\cdot2=10\end{cases}\)

TH2: k=-2

=>\(\begin{cases}x=2\cdot\left(-2\right)=-4\\ y=3\cdot\left(-2\right)=-6\\ z=5\cdot\left(-2\right)=-10\end{cases}\)

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{\left(x^3+y^3\right)-\left(x^3-2y^3\right)}{2}=\frac{3y^3}{2}\)

Từ\(\frac{x^3+y^3}{6}=\frac{3y^3}{2}\Rightarrow2x^3+2y^3=18y^3\Rightarrow2x^3=16y^3\Rightarrow x^3=8y^3=2^3y^3=\left(2y\right)^3\Rightarrow x=2y\)

Thế \(x=2y\)vào \(\left|xy\right|=\left|2y\cdot y\right|=2\Rightarrow\left|2y^2\right|=2\Rightarrow2y^2=2\)(vì \(2y^2\ge0\))\(\Rightarrow y^2=1\)

\(\Rightarrow y=\pm1\Rightarrow x=\pm2\)

có nghĩ là có 4 đáp số nhé bạn y=1;x=2

                                                 y=1;x=-2

                                                 y=-1;x=2

                                                 y=-1;x=-2

26 tháng 3 2019

Từ đề <=>\(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+zy}\Leftrightarrow xz=xy=zy\)

Có : \(zx=xy\Rightarrow y=z\left(\text{Vì }x\ne0\right),xy=zy\Rightarrow x=z\)

=> x=y=z 

tự tính M :]]

27 tháng 3 2019

bạn nào t-i-k sai cho tớ làm lại hộ ạ :)

\(\frac{xy}{x+y}=7,2\Leftrightarrow\frac{xy}{3}=7,2\Rightarrow xy=7,2\times3=21,6\)

Đến đây thì chắc là sai đề đó.

1 tháng 6 2018

Ta có: \(\frac{xy}{x+y}=7,2\Rightarrow7,2.\left(x+y\right)=xy\)

Thay x + y = 3 ta được \(xy=7,2.3=21,6\)

Thử lần lượt nha