Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có :x+y=a1\(\sqrt{2}\)+b1+a2\(\sqrt{2}\)+b2=(a1+a2)\(\sqrt{2}\)+b1+b2
mặt khác, ta lại có a1,a2,b1,b2 là những số hữu tỉ nên (a1+a2);(b1+b2) cũng là những số hữu tỉ
=>biểu thức x+y cũng được viết dưới dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ.
ta xét tích x.y=(a1\(\sqrt{2}\)+b1)(a2\(\sqrt{2}\)+b2)=2a1.a2+a1.b2\(\sqrt{2}\)+b1.a2.\(\sqrt{2}\)+b1.b2=(a1b2+b1a2)\(\sqrt{2}\)+(2a1a2+b1b2)
vì a1,a2,b1,b2 là những số hữu tỉ nên các tích a1a2;b1b2;a1b2;a2b1 là những số hữu tỉ nên x.y cững có dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ
b) xét thương \(\dfrac{x}{y}\)=\(\dfrac{a_1\sqrt{2}+b_1}{a_2\sqrt{2}+b_2}=\dfrac{\left(a_1\sqrt{2}+b_1\right)\left(a_2\sqrt{2}-b_2\right)}{\left(a_2\sqrt{2}+b_2\right)\left(a_2\sqrt{2}-b_2\right)}\)
=\(\dfrac{2a_1a_2-a_1b_2\sqrt{2}+a_2b_1\sqrt{2}-b_1b_2}{2a_2^2-b_2^2}\)=\(\dfrac{\left(a_2b_1-a_1b_2\right)\sqrt{2}}{2a_2^2-b_2^2}+\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)
vì a1,b1,a2,b2 là những số hữu tỉ nên a1b2;a1a2;b1b2;a2b1 cũng là những số hữu tỉ hay \(\dfrac{a_2b_1-a_1b_2}{2a_2^2-b_2^2};\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)cũng là những số hữu tỉ nên \(\dfrac{x}{y}\) cũng có dạng a\(\sqrt{2}\)+b với a và b là những số hữu tỉ
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
Câu 1/
\(\hept{\begin{cases}4xy=5\left(x+y\right)\\6yz=7\left(y+z\right)\\8zx=9\left(z+x\right)\end{cases}}\)
Dễ thấy \(x=y=z=0\) là 1 nghiệm của hệ
Xét \(x,y,z\ne0\) thì ta có hệ
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{y}+\frac{1}{x}=\frac{4}{5}\\\frac{1}{z}+\frac{1}{y}=\frac{6}{7}\\\frac{1}{x}+\frac{1}{z}=\frac{8}{9}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{131}{315}\\\frac{1}{y}=\frac{121}{315}\\\frac{1}{z}=\frac{149}{315}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{315}{131}\\y=\frac{315}{121}\\z=\frac{315}{149}\end{cases}}\)
PS: Đừng đăng nhiều câu cùng lúc vì các bạn khác sẽ bỏ qua đấy b. Mỗi lần đăng 1 câu thôi
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
suy nghĩ của mình tìm cách loại bỏ căn 2 trong hệ thức a = ..., b =...
vậy vô hiệu hóa a= ... thì không hiệu hóa b = ...
Không có nghiệm x.
? tham khảo !