\(x-\left(m+1\right)x+2m=0\) có 2 nghiệm phân biệt x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2020

Chắc pt đúng là \(x^2-\left(m+1\right)x+2m=0\)

Để pt có 2 nghiệm pb \(\Leftrightarrow m^2-6m+1>0\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=2m\end{matrix}\right.\)

\(P=\frac{m}{\left(m+1\right)^2-6m+3}=\frac{m}{m^2-4m+4}\)

- Với \(m=0\Rightarrow P=0\)

- Với \(m\ne0\)

\(\Leftrightarrow Pm^2-\left(4P+1\right)m+4P=0\)

\(\Delta=8P+1\ge0\Rightarrow P\ge-\frac{1}{8}\)

\(\Rightarrow P_{min}=-\frac{1}{8}\) khi \(m=-2\) (thỏa mãn điều kiện \(\Delta>0\))

18 tháng 3 2018

đen ta = (2m-1)^2 - 4(m^2-1) = 4m^2 - 4m + 1 - 4m^2 + 4 = 5-4m >= 0 => m =< 5/4

p = (x1)^2 + (x2)^2 = (x1+x2)^2 - 2x1x2 = (2m-1)^2 - 2.(m^2-1) = 4m^2 - 4m + 1 - 2m^2 + 2 = 2m^2 - 4m + 2 + 1 = 2(m-1)^2 + 1 >= 1

dấu "=" xảy ra khi m = 1 (thõa mãn =< 5/4)

mậy minP = 1 khi m = 1

NV
2 tháng 4 2019

\(\Delta'=\left(m+1\right)^2-2m+3=m^2+4>0\)

Phương trình luôn có 2 nghiệm pb thỏa: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

\(B=A^2=\frac{\left(x_1+x_2\right)^2}{x_1^2+x_2^2-2x_1x_2}=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}\)

\(B=\frac{4m^2+8m+4}{4m^2+16}=\frac{m^2+2m+1}{m^2+4}\)

\(\Leftrightarrow B\left(m^2+4\right)=m^2+2m+1\Leftrightarrow\left(B-1\right)m^2-2m+4B-1=0\) (1)

Do pt luôn có nghiệm với mọi m nên (1) luôn có nghiệm

\(\Rightarrow\Delta'=1-\left(B-1\right)\left(4B-1\right)\ge0\)

\(\Rightarrow-4B^2+5B\ge0\)

\(\Rightarrow0\le B\le\frac{5}{4}\)

Vậy \(B_{max}=\frac{5}{4}\) khi \(m=4\)

3 tháng 4 2019

Tìm A hehe

10 tháng 6 2016

Áp dụng hệ thức Vi-et, ta có : 

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)

Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.

Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)

Suy ra \(MinA^2=0\Leftrightarrow m=-1\) 

Vậy Min A = 0 \(\Leftrightarrow\)m = -1

10 tháng 6 2016

ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét

4 tháng 4 2022

Phương trình 2 nghiệm phân biệt khi 

\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)

\(\Leftrightarrow m\ne-1\)

Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)

Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)

<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)

\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)

Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán 

NV
5 tháng 4 2022

\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)

\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)

\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)

\(\Leftrightarrow m\ge-\dfrac{8}{3}\)

Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)