Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{y}{-14}\) mà \(\frac{y}{-14}=\frac{z}{5}\)
=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}=\frac{2x+4y-6z}{12-56-30}=-\frac{15}{74}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{15}{74}\cdot6=-\frac{45}{37}\\y=-\frac{15}{74}\cdot\left(-14\right)=\frac{105}{37}\\z=-\frac{15}{74}\cdot-\frac{75}{74}\end{cases}}\)
Giải thích các bước giải:
mà
Vì z là số nguyên dương
mà y là số nguyên dương và
Thế vào và
+) Với
Với
Vậy ta có các cặp nghiệm là:
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)