Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{y}{-14}\) mà \(\frac{y}{-14}=\frac{z}{5}\)
=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}=\frac{2x+4y-6z}{12-56-30}=-\frac{15}{74}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{15}{74}\cdot6=-\frac{45}{37}\\y=-\frac{15}{74}\cdot\left(-14\right)=\frac{105}{37}\\z=-\frac{15}{74}\cdot-\frac{75}{74}\end{cases}}\)

Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)

Ta cần tìm các cặp số nguyên \(\left(\right. x , y \left.\right) \in \mathbb{Z}\) sao cho:
\(x^{2} + y^{2} - 2 x - 4 y < - 3\)
Bước 1: Quy về dạng bình phương hoàn chỉnh
Ta nhóm các hạng tử theo biến:
\(x^{2} - 2 x + y^{2} - 4 y < - 3\)
Bây giờ, hoàn thành bình phương:
- \(x^{2} - 2 x = \left(\right. x - 1 \left.\right)^{2} - 1\)
- \(y^{2} - 4 y = \left(\right. y - 2 \left.\right)^{2} - 4\)
Thay vào:
\(\left(\right. x - 1 \left.\right)^{2} - 1 + \left(\right. y - 2 \left.\right)^{2} - 4 < - 3\) \(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} - 5 < - 3\) \(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} < 2\)
Bước 2: Giải bất phương trình
Ta cần tìm các số nguyên \(\left(\right. x , y \left.\right)\) sao cho:
\(\left(\right. x - 1 \left.\right)^{2} + \left(\right. y - 2 \left.\right)^{2} < 2\)
Vì đây là tổng bình phương nên:
- \(\left(\right. x - 1 \left.\right)^{2} \in \left{\right. 0 , 1 \left.\right}\)
- \(\left(\right. y - 2 \left.\right)^{2} \in \left{\right. 0 , 1 \left.\right}\)
Và tổng < 2.
Xét từng khả năng:
- \(\left(\right. x - 1 \left.\right)^{2} = 0 \Rightarrow x = 1\)
- \(\left(\right. y - 2 \left.\right)^{2} = 0 \Rightarrow y = 2\) → Tổng = 0 → TM
- \(\left(\right. y - 2 \left.\right)^{2} = 1 \Rightarrow y = 1 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; 3\) → Tổng = 1 → TM
- \(\left(\right. x - 1 \left.\right)^{2} = 1 \Rightarrow x = 0 \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; 2\)
- \(\left(\right. y - 2 \left.\right)^{2} = 0 \Rightarrow y = 2\) → Tổng = 1 → TM
Không có trường hợp nào với \(\left(\right. x - 1 \left.\right)^{2} = 1\) và \(\left(\right. y - 2 \left.\right)^{2} = 1\) vì tổng = 2 → không thỏa.
Kết luận:
Tập nghiệm nguyên là các cặp:
\(\left(\right. x , y \left.\right) \in \left{\right. \left(\right. 1 , 2 \left.\right) , \left(\right. 1 , 1 \left.\right) , \left(\right. 1 , 3 \left.\right) , \left(\right. 0 , 2 \left.\right) , \left(\right. 2 , 2 \left.\right) \left.\right}\) tham khảo
\(x^2+y^2-2x-4y<-3\)
=>\(x^2-2x+1+y^2-4y+4<-3+1+4\)
=>\(\left(x-1\right)^2+\left(y-2\right)^2<2\)
mà x,y nguyên
nên \(\left\lbrack\left(x-1\right)^2;\left(y-2\right)^2\right\rbrack\in\left\lbrace\left(1;0\right);\left(0;1\right);\left(0;0\right)\right\rbrace\)
=>(x-1;y-2)∈{(1;0);(-1;0);(0;1);(0;-1);(0;0)}
=>(x;y)∈{(2;2);(0;2);(1;3);(1;1);(1;2)}

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)